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ABSTRACT. By assuming the spatially flat FLRW
line-element and employing the Hamiltonian for-
malism, a noncommutative (NC) setting of the
Brans-Dicke (BD) theory is introduced. We investi-
gate gravity-driven acceleration and kinetic inflation
in this NC BD cosmology. Despite to the commutative
case, in which both the scale factor and BD scalar
field are obtained in power-law forms (in terms of the
cosmic time), in our herein NC model, we see that the
power-law scalar factor is multiplied by a dynamical
exponential warp factor. This warp factor depends
on not only the noncommutative parameter but also
the momentum conjugate associated to the BD scalar
field. For very small values of this parameter, we
obtain an appropriate inflationary solution, which can
overcome problems within standard BD cosmology
in a more efficient manner. Moreover, we see that a
graceful exit from an early acceleration epoch towards
a decelerating radiation epoch is provided. For late
times, due to the presence of the NC parameter,
we obtain a zero acceleration epoch, which can be
interpreted as the coarse-grained explanation.

1. Introduction

In the BD setting employed in [1, 2], a variable BD
coupling parameter rather than a constant one has
been supposed. Then, without introducing any scalar
potential or cosmological constant, an accelerated ex-
panding universe, from the kinetic energy density of
a dynamical Planck mass, has been obtained. In [2],
it has been argued that, to meet sufficient inflation,
the scale factor in the Einstein frame must accelerate.
However, there is no source to get an accelerating scale
factor in that frame. In other words, in the commuta-
tive case of the BD theory [3] (in the Jordan frame),
even by assuming variable ω, there is a fundamental
problem with kinetic inflation: regardless of the form

of ω(ϕ), all the D branch1 solutions are encountered
with the graceful exit problem [2].
In our herein NC BD setting2, which, regardless of

varying ω, can be considered as a generalized set up
of [2], we will obtain an accelerating scale factor for
the early Universe, without encountering the above-
mentioned problems of [2]. Moreover, we will show that
requirements of an inflationary epoch (specially, the
nominal as well as sufficient conditions) are satisfied in
a more convenient manner when the noncommutativity
parameter is present.
In this paper, by assuming a spatially flat FLRW

universe, a generalized BD theory, and introducing
a particular NC Poisson bracket between the BD
scalar field and the logarithm of scale factor, we
review the solutions (associated to the NC equations
of motion) and discuss the effects of noncommutativity.

2. Noncommutative Brans-Dicke Cosmologi-
cal Setting

We start with the spatially flat FLRW metric as the
background geometry, namely

ds2 = −N2(t)dt2 + e2α(t)
(
dx2 + dy2 + dz2

)
, (1)

where a(t) = eα(t) is the scale factor and N(t) is a lapse
function.
To get a general set of the field equations, let us start

with the Lagrangian associated to the (generalized3)
BD theory in the Jordan frame as

L[g, ϕ] =
√
−g
[
ϕR− ω(ϕ)

ϕ
gµν∇µϕ∇νϕ− V (ϕ)

]
(2)

1We will introduce the D and X branches later.
2Most of the discussions of this work has been reported in our

previous paper [4].
3It has been recently shown [5, 6] that, instead of adding a

scalar potential to BD action, such a scalar potential can be
induced from the geometry of an extra dimension.
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+
√
−gLmatt,

where Lmatt = 16πρ(α) is the Lagrangian density of
ordinary matter (ρ is the energy density), which does
not explicitly depend on the BD scalar field ϕ. The
BD parameter ω(ϕ) is a function of the BD scalar field
and varies with the space-time point; V (ϕ) is the scalar
potential, the greek indices run from zero to 3 and R is
the Ricci scalar associated to the metric gµν , whose de-
terminant is denoted by g. Therefore, the Hamiltonian
of the model is given by

H = −Ne−3α

2χϕ

[
ω(ϕ)

6
P 2
α − ϕ2P 2

ϕ + ϕPαPϕ

]
(3)

+ Ne3α (V − 16πρ) ,

where χ ≡ 2ω + 3, and Pα, Pϕ are the conjugate mo-
menta associated to α and ϕ, respectively. In this
work, we work with the comoving gauge, namely, we
set N = 1. Instead of the commutative phase space
where the Poisson algebra is given by {α, ϕ} = 0,
{Pα, Pϕ} = 0, {α, Pα} = 1 and {ϕ, Pϕ} = 1, to investi-
gate the effects of a classical evolution of the noncom-
mutativity on the cosmological equations of motion, we
presume the following Poisson commutation relations
between the variables as {α, ϕ} = θ, {Pα, Pϕ} = 0,
{α, Pα} = 1 and {ϕ, Pϕ} = 1 where the NC parameter
θ is taken as a constant. Employing these noncommu-
tation relations and the Hamiltonian (3) leads us to
deformed equations of motion as

α̇ = −e−3α

2χϕ

[
ω(ϕ)

3
Pα + ϕPϕ

]
− θe−3α

2χϕ

[
1

6

dω(ϕ)

dϕ
P 2
α − 2ϕP 2

ϕ + PαPϕ

]
+

θe3α

ϕ

[
V (ϕ) + ϕ

dV (ϕ)

dϕ
− 16πρ

]
, (4)

Ṗα = e3α
[
−6V (ϕ) + 16π

(
6ρ+

dρ

dα

)]
, (5)

ϕ̇ = −e−3α

2χ
(Pα − 2ϕPϕ)

− θe3α
[
6V (ϕ)− 16π

(
6ρ+

dρ

dα

)]
. (6)

Ṗϕ =
e−3α

2χϕ

[
(Pα − 2ϕPϕ)Pϕ +

1

6
P 2
α

dω(ϕ)

dϕ

]
− e3α

ϕ

[
V (ϕ) + ϕ

dV (ϕ)

dϕ
− 16πρ

]
, (7)

where a dot denotes the differentiation with respect to
the cosmic time and we have assumed ϕ = ϕ(t). We
should note that the equations of motion associated to
the momenta Pα and Pϕ, under the proposed NC de-
formation, are the same as ones in the commutative
case and, obviously, in the limit θ → 0, Eqs. (4) and
(6) are reduced to the corresponding standard commu-
tative equations.

In what follows, we investigate the cosmological
implications of this NC BD setting for a very simple
case in which the BD parameter is a constant and
the scalar potential and the ordinary matter are absent.

3. Gravity-Driven acceleration for cosmolog-
ical models in the noncommutative BD Setting

As mentioned, we would like to assume a very sim-
ple case in which we set ω(ϕ) = ω = constant,
ρ = 0 and V (ϕ) = 0. Therefore, from (5), we get
Ṗα = 0, which gives a constant of motion. Thus, we
get Pα = c1; also, Eqs. (4) and (7) give Pϕ = c±2 ϕ

−1

where c1 and c±2 ̸= 0 are the integration constants.
These constants are not independent; by substitut-
ing them into the Hamiltonian constraint, we obtain
c±1 = (3|c2|/ω) [−sgn(c2)± ξ] where ξ ≡

√
χ/3, ω ̸= 0

and sgn(x) = x/|x| is the signum function. Thus, from
(6), ϕ̇ can be given by

ϕ̇ = − f±

ξa3
where f± ≡ |c2|

2ω
[−sgn(c2)ξ ± 1] . (8)

By employing the obtained expressions associated to
the momenta and the integration constants, from
Eqs. (4) and (6) we obtain

H = h±

(
ϕ̇

ϕ

)
where h± ≡ g± +

c2θ

ϕ
, (9)

where H = ȧ/a is the Hubble constant and g± ≡
− 1

2 [1± sgn(c2)ξ]. We should note that the above equa-
tions corresponding with each sign of4 c2 yield two
branches for the Hubble parameter. If we assume an
attractive gravity [7], i.e., ϕ > 0, the values of ϕ̇ as well
as h corresponding to each branch5 must be specified
to get an expansion or contraction universes. For in-
stance, in a special case, by setting c2 > 0 and θ = 0,

we obtain H = − ϕ̇
2ϕ (1 ± ξ). In this case, for ξ < 1,

H > 0 only when ϕ̇ < 0, and H < 0 only when ϕ̇ > 0
(for both of the branches). While, for ξ > 1, to have a
positive Hubble expansion we must choose the upper
sign for ϕ̇ < 0 and the lower sign for ϕ̇ > 0.
Now, let us investigate a general case. We

get the acceleration of the scale factor as ä
a =

− 1
6ϕ

[
ρ(ϕ) + 3p(ϕ)

]
= −

(
ϕ̇
ϕ

)2 (
2h2 + h+ c2θ

ϕ

)
, where

4For simplicity of expressing the quantities, we will sometimes
drop the index ±.

5Following [8, 1, 2], we will call the branches as follows. As
in the Einstein frame, one of the branches always yields an ex-
panding universe, while the other gives a contracting universe.
Therefore, the solutions correspond to the former, and the lat-
ter are called the X branch and D branch, respectively. In our
herein model, when c2 > 0, X branch and D branch solutions
correspond to the upper sign and lower sign solutions, respec-
tively. When c2 < 0, we note the transformations derived after
Eq. (16).
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the energy density and pressure associated to the BD
scalar field are given by [6]

ρ(ϕ) ≡ −T 0(ϕ)
0 = 3h2

(
ϕ̇2

ϕ

)
, (10)

p(ϕ) ≡ T
i(ϕ)
i =

(
3h2 + 2h+

2c2θ

ϕ

)(
ϕ̇2

ϕ

)
, (11)

where i = 1, 2, 3 (with no sum) and we have employed
relations (8) and (9). Therefore, in order to get an
accelerating universe, the following constraint must be
satisfied

2h2 + h+
c2θ

ϕ
< 0. (12)

As ρ(ϕ) > 0, relation (11) and constraint (12) dictate
that the pressure must take negative values.
From (9), we get a relation between the scale factor

and the BD scalar field as

a(t) = ai[ϕ(t)]
ge−c2θϕ

−1

, (13)

where ai = eαi is an integration constant, which cor-
responds to α in a specific time. Eq. (13) indicates
that the NC parameter appears in the power of an ex-
ponential warp factor. We can easily show that this
time-dependent warp factor appears in the differen-
tial equation associated to ϕ [see Eq. (14)] and makes
it a very complicated differential equation, such that
we have to solve it numerically instead. Employing
Eqs. (13) and (8), we get a differential equation for the
BD scalar field as

ϕ̇ϕ3ge−3c2θϕ
−1

= − f

a3i ξ
, (14)

where, according to (8), f depends on c2 and ω.
In the commutative case, dependent on the value of

ω, we obtain two different types of solutions: (i) when
g = −1/3 (or ω = −4/3), which corresponds to both
the lower sign (when c2 > 0) and the upper sign (when
c2 < 0), the solutions correspond to the de Sitter-like

space as a(t) = aiϕ
− 1

3

i emt and ϕ(t) = ϕie
−3mt, where ϕi

is an integration constant, andm ≡ −|c2|
8a3

i

[−sgn(c2)±3],
ii) for ω ̸= −4/3, we obtain the generalized version
of the well-known O’Hanlon-Tupper solution [9, 7] as
a(t) = ãi(t− tini)

r± and ϕ(t) = ϕ̃i(t− tini)
s± with

ϕ̃i =

{
| c2 |
2a3i ω

[
sgn(c2)∓

(ω + 1)

ξ

]}s±

,

ãi = aiϕ̃
g
i = ai

{
| c2 |
2a3i ω

[
sgn(c2)∓

(ω + 1)

ξ

]}r±

,

where tini is an integration constant and the exponents
r± and s± are given by

r± =
1

3ω + 4
[ω + 1± sgn(c2)ξ] , (15)

s± =
1∓ 3sgn(c2)ξ

3ω + 4
.

Here, we should explain the role of the parameters
present in the model. For a particular case where
c2 > 0 (or c2 < 0), we get the solutions corresponding
to (r+, s+) and (r−, s−) known as the fast and slow
solutions, respectively [7].
By assuming ω ̸= −4/3 and redefining Φ ≡ −ln(Gϕ)

(where G is the gravitational constant), it has been
shown [10] that there are duality transformations as

α →
(
3ω + 2

3ω + 4

)
α− 2

(
ω + 1

3ω + 4

)
Φ, (16)

Φ → −
(

6

3ω + 4

)
α−

(
3ω + 2

3ω + 4

)
Φ,

under which the slow and fast solutions are inter-
changed [11], namely, (r±, s±)←→ (r∓, s∓). However,
in our model for θ = 0 herein, from (15), without con-
sidering the duality transformations (16), we can see
that the sign of the integration constant c2 is respon-
sible for the mentioned role, interchanging the lower-
upper solutions. More precisely, under interchanging
c2 > 0 ↔ c2 < 0, the parameters c1, g, and f trans-
form as (c±1 , f

±, g±) ←→ (−c∓1 ,−f∓, g∓), and, conse-
quently, we get (r±, s±) ←→ (r∓, s∓). Also for the
general NC case, as seen from (9), the general duality
transformations, not only depend on the f , g, and the
integration constants c1 and c2 but also may depend
on the noncommutativity parameter.
In our model, due to presence of the three pa-

rameters c2, ω and θ, we can obtain a good variety
of solutions for X and D branches, for more detail,
see [4]. Here, we are only interested in summarizing
some of the results of Case Ia, namely, the lower sign
with c2 > 0, −3/2 < ω < −4/3 and θ < 0: (i) For
very small negative values for the noncommutative
parameter, we have shown that the scale factor starts
from a singular point at t = 0 and increases for both
of the commutative and NC cases. However, it always
does not have the same behavior for these cases. For
the commutative case, we always get ä > 0, while for
the noncommutative case, for the very early times, we
have ä > 0, but at the special point, it turns to be
negative; namely, after a very small time, the phase
changes and we obtain a decelerating universe. (ii)
The scalar field always drops for both of the commu-
tative and NC cases. (iii) The larger the integration
constant c2, the shorter the time of the accelerating
phase. (iv) The smaller the |θ |, the larger the slope of
a(t), namely ȧ. (v) In the late times, by assuming the
same initial values for the parameters (except θ), ϕ(t)
tends to zero for both the commutative and NC cases.
However, for the large values of the cosmic time, in
the commutative case, ä never takes a constant value.
While, in the NC case, we get a zero acceleration epoch.
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5. Kinetic inflation

In the previous section, by proposing a NC setting
for the BD theory, we have mentioned that how we can
overcome the graceful exit problem. However, these
features alone do not guarantee a scenario for the res-
olution of the problems with the standard cosmology.
In this section, we first investigate the nominal con-

dition [1] for the acceleration associated to the infla-
tion, namely,

d
Hor

> H−1, where d
Hor

(t) = a(t)

∫ t

ti

dt′/a′. (17)

Then, in the rest of this section, we will study the
condition for sufficient inflation.
Employing Eqs. (8), (9), and after some manipula-

tions, we obtain

dln(a2ϕ)

dt
= ±(2h+ 1)

(
ϕ̇

ϕ

)
. (18)

Using (8) and integrating over dt, we get

d
Hor

=
a3ϕ

|f |
− 2c2

2g + 1
d

NC

(19)

up to a constant of integration. In Eq. (19), we intro-

duced a NC contribution of distance, d
NC

, as d
NC ≡

θa
c2

∫
P ′
ϕ′dt′/a′. We expect that d

NC

can add a positive

value to the d
Hor

to properly assist in satisfying the re-
quirement associated to the horizon problem. In order
to compare, by the aid of (8), we rewrite Eq. (9) as
H = |f |h/(ξa3ϕ). Employing this result and (19) in
the nominal condition (17) yields

D
NC

≡ d
Hor

−H−1 =
ϕa3

|f |

(
1 +

ξ

h

)
− 2d

NC

2g + 1
> 0. (20)

Obviously, when θ goes to zero then d
NC

vanishes, and,
thus, the relation associated to the horizon distance
of the commutative case is recovered. Therefore, the
resulted relation is the same as corresponding one in
Ref. [1] provided that the BD coupling parameter takes
constant values within. Consequently, when θ = 0 the
only acceptable result is 0 < ξ < 1 (−3/2 < ω < 0),
which is obtained by choosing either the upper sign for
c2 > 0 or the lower sign for c2 < 0.

For our herein NC case, it is important to empha-
size that the NC parameter plays a significant role in
determining whether the constraint (20) is satisfied or
not. As an example, for both the commutative and
the NC (case Ia) cases, in Fig. 1, we have plotted D

NC

versus cosmic time. This figure shows that the con-
straint (20), at all times, for the NC case can be easier
satisfied than its corresponding commutative case.

Figure 1: The behavior of the D
NC

, the quantity which
defined as in (20), versus cosmic time. The dashed
and solid curves are associated to the commutative and
NC cases, respectively. This figure is plotted (as an
example) to show that the nominal condition (17) for
the NC solutions (particularly for the case Ia) can be
easily satisfied. The initial values are ω = −1.4, a0 =
1 = c2, θ = 0 (dashed curve) and θ = −0.000001 (solid
curve) [4].

In what follows, we investigate the condition for suf-
ficient inflation, which is constrained as [2]

d
Hor

⋆

a⋆
>

1

H0a0
. (21)

The quantity appeared in lhs of the above inequality is
comoving size of a causally connected region at a spe-
cific earlier time t⋆. From relation (18), for the specific
time t⋆, we obtain

d
Hor

⋆ =
a3ϕ(1− δ)

fsgn(c2)
− 2

2g + 1
d

NC

∣∣∣∣∣
⋆

. (22)

We should note that the integration constant, which
was removed in relation (19), has now been included

in δ ≡ a2
iϕi

a2ϕ where the subscript i stands for initial
values. By assuming that ϕ > 0, we always have δ ≥ 0.
In order to construct the inequality (21) in our herein
NC model, which can be appropriately compared with
the corresponding commutative one, we have employed
a few assumptions and a lot of manipulations. Let us
here just express the final result [4]:

a2⋆ϕ⋆

a2endϕend

(
M0√
ᾱ0T0

)
(1− δ⋆)

−1ξ2 (23)

× 1

4πϵ | f | (g + c2θ
ϕ )2[1− 2dNC

⋆

(2g+1)|f |(1−δ⋆)a3
⋆ϕ⋆

]
,

where the time tend is devoted to the end of inflation in
which the entropy is produced. The subscript 0 stand
for the present epoch, M0 is the value of the Planck
mass today and ᾱ0 = γ(t0)η0 = (8π/3)(π2/30)ḡ(t0)η0,

0 20 40 60 80 100

0

500

1000
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2000
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Figure 2: The time behavior of aϕ1/2 for the commu-
tative case (dashed curve) and NC case (solid curve).
The initial conditions are c2 = 1 = a0, ω = −1.36 and
θ = −0.000001 for the NC case [4].

in which η0 is for the ratio today of the energy density
in matter to that in radiation. The constraint (23) is
the generalized (noncommutative) version of the one
resulted in [2] provided the BD coupling is taken as a
constant therein.
We should note that, in the commutative case, the

constraint (21), even with assuming a favorite set of ini-
tial conditions, implies that the quantity a2ϕ decreases
with the cosmic time, which also indicates that the
Planck mass must decrease during inflation. Conse-
quently, to get an admissible result, a branch change
must be induced [2].
In the NC case, considering the lower sign with

c2 > 0 (D branch) and employing (18), (9) and

the expression for g±, we obtain dln(aϕ
1
2 )/dt =

−|f |/(2ξa3ϕ)
[
sgn(c2)ξ +

2c2θ
ϕ

]
, which, for the commu-

tative case, is reduced to dln(aϕ
1
2 )/dt = −|f |/(2a3ϕ).

It is easy to show that that, for the commutative case,
the quantity aϕ1/2 always decreases with the cosmic
time, see Fig. 2. We should emphasize that such a re-
sult is not in agreement with the observational data [4].

For a general NC case, fortunately, for c2 > 0, θ < 0,
and lower case, i.e., the D branch, we have shown
numerically that at the early times, aϕ1/2 behaves
similar to its corresponding in the commutative case.
However, after reaching a nonzero minimum, it starts
to increase, see Fig. 2.

6. Conclusions

In this paper, we have introduced a NC BD setting.
Such a scenario bears much resemblance to the set-
tings assumed in NC quantum cosmology or a few clas-
sical noncommutative gravitational/cosmological in-
vestigations in theories alternative to general relativ-

We have constructed a NC generalized BD setting
to include key ideas of duality and branch changing
as well as gravity-driven acceleration and kinetic infla-
tion. Then, we have assumed that N = 1 and there is
neither a scalar potential nor a cosmological constant.
Moreover, we have assumed that the Lagrangian den-
sity of the ordinary matter is absent.
In this scenario, we have found that the power-law

scale factor of the Universe is not similar to the com-
mutative case, but instead it is generalized to be mul-
tiplied with a time-dependent exponential warp factor.
Moreover, we have seen that the BD scalar field is not
in the form of a simple power function of time (similar
to its corresponding commutative case), but instead, it
can be obtained from a more complicated differential
equation.
For θ = 0, we have shown that our herein model

yields an extended model of the de Sitter–like space
and O’Hanlon-Tupper solutions. In the latter, the in-
tegration constants play the role of the duality trans-
formations introduced in the context of the BD the-
ory [11].
For case Ia, we have shown that the scale factor al-

ways accelerates in the commutative case, while, for
the NC case, it accelerates only for very early times,
and after a very short time, it turns to give a decel-
erated universe. Consequently, our model can be an
appropriate inflationary model, in which we can over-
come the graceful exit problem. Moreover, contrary
to the commutative model in which the scale factor
always accelerates in late times, we get a zero accel-
eration epoch for the Universe in the NC case. It has
believed that this result can be interpreted as coarse-
grained explanation of the quantum gravity footprint.
We have shown that both the nominal and sufficient

requirements associated to the inflation can be fully
satisfied in our NC model.
In the BD theory with a variable ω [2], for a kinetic

inflation model, all the accelerations in the D branch
suffer from the graceful exit problem. However, for our
NC model, we have shown that his problem is appropri-
ately solved due to the presence of the NC parameter:
at the very early times, although, the same as the com-
mutative case, aϕ1/2 decreases with the cosmic time,
while after a very short time, it starts to increase with
time, which is in agreement with observations.
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