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Explicit formulae for Chern-Simons
invariants of the hyperbolic J(2n,´2m)

knot orbifolds
Ji-Young Ham, Joongul Lee

Abstract. We calculate the Chern-Simons invariants of the hyperbolic dou-
ble twist knot orbifolds using the Schläfli formula for the generalized Chern-
Simons function on the family of cone-manifold structures of double twist
knots.

Анотація. В роботі обчислено інваріанти Черна-Саймонса гіперболі-
чних орбіфолдів, що мають тип двічі скрученого вузла, використовуючи
формулу Шлафлі для узагальненої функції Черна-Саймонса для сім’ї
конусних структур двічі скручених вузлів.

1. INTRODUCTiON
Chern-Simons invariants of hyperbolic knot orbifolds are computed ex-

plicitly for a few infinite families in [2–4] using the “Schläfli formula”.
In this paper, we present the explicit formulae for Chern-Simons invari-

ants of the hyperbolic double twist knot orbifolds and we present them
numerically for some of double twist knot orbifolds. A brief history of
Chern-Simons invariant can be found in [2–4]. A double twist knot is
denoted by C(2n, 2m) according to Conway notation or by J(2n,´2m)
according to Hoste-Shanahan notation. Figure 2 presents C(2n, 2m) for
m,n ą 0.

For a two-bridge hyperbolic link, there exists an angle α0 P [2π3 , π) for
each link K such that the cone-manifold K(α) is hyperbolic for α P (0, α0),

2010 Mathematics Subject Classification: 57M25, 57M27.
Keywords: Chern-Simons invariant, double twist knot, orbifold, Riley-Mednykh polyno-

mial, orbifold covering
Ключові слова: інваріант Черна-Саймонса, двічі скручений вузол, орбіфолд,

многочлен Райлі-Мєдних, накриття орбіфолда
DOI : http://dx.doi.org/10.15673/tmgc.v15i3-4.2337

219



220 J. Ham, J. Lee

Euclidean for α = α0, and spherical for α P (α0, π], [5,9,11,12]. We will use
the Chern-Simons invariant of the lens space L(4nm + 1, 2n(2m ´ 1) + 1)
calculated in [7]. The following theorem gives the Chern-Simons invariant
formulae for the hyperbolic C(2n, 2m) knots. Let Sk(v) be the Chebychev
polynomials defined by

S0(v) = 1, S1(v) = v,

Sk(v) = vSk´1(v) ´ Sk´2(v),

for all integers k.

Theorem 1.1. Let X2m
2n (α) be the hyperbolic cone-manifold with underlying

space S3 and a singular set C(2n, 2m) of cone-angle 0 ď α ă α0. Let k be
a positive integer such that k-fold cyclic covering of X2m

2n

(
2π
k

)
is hyperbolic.

Then the Chern-Simons invariant of X2m
2n

(
2π
k

)
(mod 1

k if k is even or mod
1
2k if k is odd) is given by the following formula:

cs
(
X2m

2n

(
2π
k

)) ” 1

2
cs
(
L(4nm+ 1, 2n(2m´ 1) + 1)

)
+

+
1

4π2

α0ż

2π
k

Im
(
2 ˚ log

(
´M2(Sn(v) ´ Sn´1(v)) ´ (Sn´1(v) ´ Sn´2(v))

(Sn(v) ´ Sn´1(v)) ´M2(Sn´1(v) ´ Sn´2(v))

))
dα

+
1

4π2

πż

α0

Im
(
log

(
´M2(Sn(v1) ´ Sn´1(v1)) ´ (Sn´1(v1) ´ Sn´2(v1))

(Sn(v1) ´ Sn´1(v1)) ´M2(Sn´1(v1) ´ Sn´2(v1))

))
dα

+
1

4π2

πż

α0

Im
(
log

(
´M2(Sn(v2) ´ Sn´1(v2)) ´ (Sn´1(v2) ´ Sn´2(v2))

(Sn(v2) ´ Sn´1(v2)) ´M2(Sn´1(v2) ´ Sn´2(v2))

))
dα,

where for M = e
iα
2 , x, x1, and x2 are zeros of Riley-Mednykh polynomial

ϕ2m2n (x,M) in Theorem 2.5. As α decreases to α0 both x1 and x2 approach
a common value x. One of x1 and x2 comes from the component of x,
and the other comes from the component of x̄. Moreover, v satisfies the
inequality, [16, Lemma 3.9]:

Im
(
(Sn(v) ´ Sn´1(v)

)(
Sn´1(v) ´ Sn´2(v)

) ě 0.

2. C(2n, 2m) KNOTS
A general reference for this section is [8]. A knot with 2n right-handed

vertical crossings and 2m left-handed horizontal crossings as in Figure 2.1
is C(2n, 2m) knot according to Conway’s notation. One can easily check
that the slope of C(2n, 2m) is 2m/(4nm + 1) which is equivalent to the
knot with slope (2n(2m´ 1) + 1) /(4nm+ 1) [14].
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FiGURE 2.1. C(2n, 2m)

We will use the following presentation of the fundamental group of
C(2n, 2m) knot(equivalently, J(2n,´2m) knot) in [8]. In [8], Hoste and
Shanahan asked whether their presentation of the fundamental group for
double twist knots can be derived from Schubert’s canonical 2-bridge di-
agram or not. The following proposition can also be obtained by reading
off the fundamental group from the Schubert normal form of C(2n, 2m)
with slope 2m/(4nm+1) [13,14] which answers Hoste-Shanahan’s question
completely for C(2n, 2m) knots. Let X2m

2n be S3zC(2n, 2m).

Proposition 2.1 ([4, Proposition2.2], [13, 14]).
π1(X

2m
2n ) =

@
s, t | swmt´1w´m = 1

D
,

where w = (t´1s)n(ts´1)n.
2.2. The Chebychev polynomial. Let Sk(v) be the Chebychev polyno-
mials defined by S0(v) = 1, S1(v) = v and Sk(v) = vSk´1(v) ´ Sk´2(v) for
all integers k. The following explicit formula for Sk(v) can be obtained by
solving the above recurrence relation [17].

Sn(v) =
ÿ

0ďiďtn
2

u
(´1)i

(
n´ i

i

)
vn´2i

for n ě 0, Sn(v) = ´S´n´2(v) for n ď ´2, and S´1(v) = 0. The following
proposition 2.3 can be proved using the Cayley-Hamilton theorem [15].

Proposition 2.3 ([15, Proposition 2.4]). Suppose V =
[
a b
c d

] P SL2(C).
Then

V k =

[
Sk(v) ´ dSk´1(v) bSk´1(v)

cSk´1(v) Sk(v) ´ aSk´1(v)

]
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where v = tr(V ) = a+ d.
2.4. The Riley-Mednykh polynomial. Let

ρ(s) =

[
M 1

0 M´1

]
, ρ(t) =

[
M 0

2 ´ v M´1

]
,

and let
c =

[
0 ´(

?
2 ´ v )´1

?
2 ´ v 0

]
.

Then from the above Proposition 2.3, we get the following Theorem 2.5
which can be found in [16]. We include the proof for readers’ convenience.
Let ρ(s) = S, ρ(t) = T , and ρ(w) = W . Then tr(T´1S) = v = tr(TS´1).
Let also v = x+M2 +M´2.

Theorem 2.5 ([16]). ρ is a representation of π1(X2m
2n ) if and only if x is

a root of the following Riley-Mednykh polynomial,
ϕ2m2n (x,M) = Sm(z) + [´1 + xSn´1(v)(Sn(v) + (1 ´ v)Sn´1(v))]Sm´1(z).

Proof. Since

T´1S =

[
1 M´1

M(M´2 + (x´ 2) +M2) M´2 + x´ 1 +M2

]
,

TS´1 =

[
1 ´M

´M´1(M´2 + (x´ 2) +M2) M´2 + x´ 1 +M2

]
,

we have that

(T´1S)n =

[
Sn(v) ´ (v ´ 1)Sn´1(v) M´1Sn´1(v)

M(v ´ 2)Sn´1(v) Sn(v) ´ Sn´1(v)

]
,

(TS´1)n =

[
Sn(v) ´ (v ´ 1)Sn´1(v) ´MSn´1(v)

´M´1(v ´ 2)Sn´1(v) Sn(v) ´ Sn´1(v)

]
.

Hence
W = (T´1S)n(TS´1)n =

[
W11 W12

(2 ´ v)W12 W22

]
,

where
W11 = S2

n(v) + (2 ´ 2v)Sn(v)Sn´1(v)+

+ (1 + 2M´2 ´ 2v ´M´2v + v2)S2
n´1(v),

W12 = (M´1 ´M)Sn(v)Sn´1(v) + (Mv ´M ´M´1)S2
n´1(v),

W22 = S2
n(v) ´ 2Sn(v)Sn´1(v) + (1 + 2M2 ´M2v)S2

n´1(v).
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Let z = tr(W ). Then, since S2
n(v) ´ vSn(v)Sn´1(v) + S2

n´1(v) = 1 (by [18,
Lemma 2.1] or by induction),

z =W11 +W22 =

= 2
(
S2
n(v) ´ vSn(v)Sn´1(v) + S2

n´1(v)
)
+

+
(
2M´2 + 2M2 ´ 2v ´M´2v ´M2v + v2

)
S2
n´1(v)

= 2 + (v ´ 2)xS2
n´1(v).

By Proposition 2.3, we have

(W )m =

[
Sm(z) ´W22Sm´1(z) W12Sm´1(z)

(2 ´ v)W12Sm´1(z) Sm(z) ´W11Sm´1(z)

]
.

Therefore
tr(SWmc)/

?
2 ´ v =

(
(M ´M´1)W12Sm´1(z) + Sm(z) ´W11Sm´1(z)

)

gives ϕ2m2n (x,M), [4]. □

3. LONGiTUDE
Let l = wm(w˚)m, where w˚ is the word obtained by reversing w. Then

l is the longitude which is null-homologous in X2m
2n . Recall that ρ(w) =W .

Let also ĂW = ρ(w˚). Then it is easy to see that ĂW can be written as

ĂW =

[
W̃22 W̃12

(2 ´ v)W̃12 W̃11

]
,

where W̃ij is obtained by Wij by replacing M with M´1. Similar compu-
tation was introduced in [8]. Hence,

W̃11 = S2
n(v) + (2 ´ 2v)Sn(v)Sn´1(v)+

+ (1 + 2M2 ´ 2v ´M2v + v2)S2
n´1(v),

W̃12 = (M ´M´1)Sn(v)Sn´1(v) + (M´1v ´M´1 ´M)S2
n´1(v),

W̃22 = S2
n(v) ´ 2Sn(v)Sn´1(v) + (1 + 2M´2 ´M´2v)S2

n´1(v).

The following lemma was introduced in [8] with slightly different coordi-
nates. Let L = ρ(l)11 be the left upper entry of ρ(l).

Lemma 3.1 ([8]). W21L+ W̃21 = 0.

Theorem 3.2.

L = ´M2 (Sn(v) ´ Sn´1(v)) ´ (Sn´1(v) ´ Sn´2(v))

(Sn(v) ´ Sn´1(v)) ´M2 (Sn´1(v) ´ Sn´2(v))
.
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Proof. A direct computation shows that W21L + W̃21 = 0 in Lemma 3.1.
Now theorem follows by substituting Sn(v) + Sn´2(v) for vSn´1(v). □

4. SCHLÄFLi FORMULA FOR THE GENERALiZED CHERN-SiMONS FUNCTiON
The general references for this section are [2, 3, 6, 7, 10,19] and [4].
In [6], Hilden, Lozano, and Montesinos-Amilibia defined the generali-

zed Chern-Simons function on the oriented cone-manifold structures which
matches up with the Chern-Simons invariant when the cone-manifold is the
Riemannian manifold.

Below, we briefly introduce the generalized Chern-Simons function on
the family of C(2n, 2m) cone-manifold structures. For an oriented knot
C(2n, 2m), we orient its chosen meridian s such that the orientation of s
followed by the orientation of C(2n, 2m) coincides with orientation of S3.
Here, we use the definition of the lens space in [7] so that we can have the
right orientation when it is combined with the following frame field.

On the Riemannian manifold

S3 ´ C(2n, 2m) ´ s

we choose a special frame field Γ = (e1, e2, e3) which is an orthonormal
frame field such that for each point x near C(2n, 2m), e1(x) has the di-
rection given by knot’s orientation, e2(x) has the tangent direction of the
meridian curve, and e3(x) has the knot to point x direction. Such a spe-
cial frame field always exists by [6, Proposition 3.1]. From Γ we obtain an
orthonormal frame field Γα on X2m

2n (α) ´ s by the Gram-Schmidt orthog-
onalization process with respect to the Riemannian structure of the cone
manifold X2m

2n (α). Moreover, it can be made special by deforming it in a
neighborhood of the singular set C(2n, 2m) and s, if necessary. Thus, Γ1
is an extension of Γ to S3 ´ C(2n, 2m). To the cone-manifold X2m

2n (α), we
assign the following real number

I
(
X2m

2n (α)
)
= 1

2

ż

Γ(S3´T2n´s)

Q´ 1
4π τ(s,Γ

1) ´ 1
4π

(βα
2π

)
,

where ´2π ď β ď 2π is the angle of the lifted holonomy of the singular
locus of X2m

2n (α), Q is the Chern-Simons form:

Q = 1
4π2

(
θ12 ^ θ13 ^ θ23 + θ12 ^ Ω12 + θ13 ^ Ω13 + θ23 ^ Ω23

)
,

and
τ(s,Γ1) = ´

ż

Γ1(s)
θ23,
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where (θij) is the connection 1-form, (Ωij) is the curvature 2-form of the
Riemannian connection on X2m

2n (α) and the integral is over the orthonor-
malizations of the same frame field. When α = 2π

k for some positive integer,
I
(
X2m

2n

(
2π
k

))
(mod 1

k if k is even or mod 1
2k if k is odd) is independent of the

frame field Γ and of the representative in the equivalence class β and hence
becomes an invariant of the orbifold X2m

2n

(
2π
k

)
. The quantity I

(
X2m

2n

(
2π
k

))

(mod 1
k if k is even or mod 1

2k if k is odd) is called the Chern-Simons
invariant of the orbifold and is denoted by cs

(
X2m

2n

(
2π
k

))
.

We have the following “Schläfli formula” for the generalized Chern-Simons
function on the family of C(2n, 2m) cone-manifold structures.

Theorem 4.1 ([7, Theorem 1.2]). For a family of geometric cone-manifold
structures, X2m

2n (α), and differentiable functions α(t) and β(t) of t we have
dI

(
X2m

2n (α)
)
= ´ 1

4π2 βdα.

5. PROOF OF THEOREM 1.1
For n ě 1 and M = ei

α
2 , ϕ2m2n (x,M) have 2mn component zeros. The

component passing through

(x1, x2) =

(
2 ´ 2 cos

(
π(2m+ 1)

4nm+ 1

)
, 2 ´ 2 cos

(
π(2m´ 1)

4nm+ 1

))

at α = π is the geometric component by [7, Theorem 2.1]. Note that
2 ´ x1 ą 0 and 2 ´ x2 ą 0. For each C(2n, 2m), there exists an angle
α0 P [2π3 , π) such that C(2n, 2m) is hyperbolic for α P (0, α0), Euclidean for
α = α0, and spherical for α P (α0, π], [5, 9, 11, 12]. Denote by D(X2m

2n (α))

the set of zeros of the discriminant of ϕ2m2n (x, ei
α
2 ) over x. Then α0 will be

one of D(X2m
2n (α)).

On the geometric component we can calculate the Chern-Simons invari-
ant of an orbifold X2m

2n

(
2π
k

)
mod 1

k if k is even or mod 1
2k if k is odd),

where k is a positive integer such that k-fold cyclic covering of X2m
2n

(
2π
k

)
is

hyperbolic:
cs
(
X2m

2n

(
2π
k

)) ” I
(
X2m

2n

(
2π
k

)) (
mod 1

k

)

” I
(
X2m

2n (π)
)
+ 1

4π2

ż π

2π
k

β dα
(
mod 1

k

)

” 1

2
cs
(
L(4nm+ 1, 2n(2m´ 1) + 1)

)
+

+
1

4π2

α0ż

2π
k

Im
(
2 ˚ log

(
´M2(Sn(v) ´ Sn´1(v)) ´ (Sn´1(v) ´ Sn´2(v))

(Sn(v) ´ Sn´1(v)) ´M2(Sn´1(v) ´ Sn´2(v))

))
dα
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+
1

4π2

πż

α0

Im
(
log

(
´M2(Sn(v1) ´ Sn´1(v1)) ´ (Sn´1(v1) ´ Sn´2(v1))

(Sn(v1) ´ Sn´1(v1)) ´M2(Sn´1(v1) ´ Sn´2(v1))

))
dα

+
1

4π2

πż

α0

Im
(
log

(
´M2(Sn(v2) ´ Sn´1(v2)) ´ (Sn´1(v2) ´ Sn´2(v2))

(Sn(v2) ´ Sn´1(v2)) ´M2(Sn´1(v2) ´ Sn´2(v2))

))
dα,

(mod 1
k if k is even or mod 1

2k if k is odd),

where the second equivalence comes from Theorem 4.1 and the third equi-
valence comes from the fact that

I
(
X2m

2n (π)
) ” 1

2cs
(
L(4nm+ 1, 2n(2m´ 1) + 1)

)
(mod 1

2),

from Theorem 3.2, and from geometric interpretations of hyperbolic and
spherical holonomy representations.

The following theorem gives the Chern-Simons invariant of the Lens
space L(4nm+ 1, 2n(2m´ 1) + 1).

Theorem 5.1 ([7, Theorem 1.3]).

cs
(
L(4nm+ 1, 2n(2m´ 1) + 1)

) ” m´ n

4nm+ 1
(mod1).

6. CHERN-SiMONS iNVARiANTS OF THE HYPERBOLiC C(2n, 2m) KNOT
ORBiFOLDS AND OF iTS CYCLiC COVERiNGS

Table 6.1 gives the approximate Chern-Simons invariant of C(2n, 2m) for
n between 1 and 4, m between 1 and 4 with n ě m. Since C(2, 2), C(4, 4),
C(6, 6), C(8, 8) are amphicheiral knots, their Chern-Simons invariants are
zero as expected. We used Simpson’s rule for the approximation with 2ˆ104

(104 in Simpson’s rule) intervals from 0 to α0 and 2ˆ104 (104 in Simpson’s
rule) intervals from α0 to π. Table 6.2 gives the approximate Chern-Simons
invariant of the hyperbolic orbifold, cs

(
X2m

2n (2πk )
)
for n between 1 and 4, m

between 1 and 4 with n ě m, and for k between 3 and 10, and of its cyclic
covering, cs

(
Mk(X

2m
2n )

)
except amphicheiral knots. We used Simpson’s rule

for the approximation with 2 ˆ 102 (102 in Simpson’s rule) intervals from
2π/k to α0 and 2 ˆ 102 (102 in Simpson’s rule) intervals from α0 to π.

We used Mathematica for the calculations. We record here that our data
in Table 6.1 and those obtained from SnapPy [1] match up up to existing
decimal points and our data in Table 6.2. For computational reasons, we
need α0 being the bifurcation point of the geometric solution of the Riley-
Mednykh polynomial as described in Theorem 1.1.
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TABLE 6.1. Chern-Simons invariant of X2m
2n for n between

1 and 4, m between 1 and 4 with n ě m except
amphicheiral knots:

2n 2m α0 cs
(
X2m

2n

)

2 2 2.094395102393195 0
4 2 2.574140778131840 0.34402298
6 2 2.750685152010280 0.27786688
8 2 2.843209532683532 0.24222232
4 4 2.847642272262783 0
6 4 2.942465754372979 0.42782933
8 4 2.990939179603150 0.38923730
6 6 3.007517657179940 0
8 6 3.040474611156828 0.46103929
8 8 3.065453796328835 0

TABLE 6.2. Chern-Simons invariant of the hyperbolic
orbifold, cs

(
X2m

2n (2πk )
)
(mod 1

k if k is even or mod 1
2k if k is

odd) for n between 1 and 4, m between 1 and 4 with
n ě m, and for k between 3 and 10, and of its cyclic
covering, cs

(
Mk(X

2m
2n )

)
except amphicheiral knots:

k cs
(
X2

4 (
2π
k )

)
cs
(
Mk(X

2
4 )
)

3 0.0875301 0.26259
4 0.144925 0.579699
5 0.0784576 0.392288
6 0.0351571 0.210943
7 0.00506505 0.0354553
8 0.108039 0.864313
9 0.0218112 0.196301
10 0.0530574 0.530574

k cs
(
X2

6 (
2π
k )

)
cs
(
Mk(X

2
6 )
)

3 0.0449535 0.13486
4 0.0876043 0.350417
5 0.0165337 0.0826684
6 0.138167 0.829004
7 0.0120078 0.0840545
8 0.0430876 0.3447
9 0.012125 0.109125
10 0.0876213 0.876213

k cs
(
X2

8 (
2π
k )

)
cs
(
Mk(X

2
8 )
)

3 0.0161266 0.0483799
4 0.0536832 0.214733
5 0.0817026 0.408513
6 0.103012 0.618074
7 0.0481239 0.336867
8 0.00768503 0.0614802
9 0.032221 0.289989
10 0.0521232 0.521232

k cs
(
X4

6 (
2π
k )

)
cs
(
Mk(X

4
6 )
)

3 0.125912 0.377736
4 0.192764 0.771058
5 0.0360431 0.180216
6 0.0996796 0.598077
7 0.00284328 0.0199029
8 0.0554674 0.443739
9 0.0409685 0.368717
10 0.0294401 0.294401
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k cs
(
X4

8 (
2π
k )

)
cs
(
Mk(X

4
8 )
)

3 0.098074 0.294222
4 0.157843 0.631371
5 0.0993608 0.496804
6 0.0622858 0.373715
7 0.0365103 0.255572
8 0.0174882 0.139906
9 0.00284881 0.0256393
10 0.091224 0.91224

k cs
(
X6

8 (
2π
k )

)
cs
(
Mk(X

6
8 )
)

3 0.138854 0.416562
4 0.214725 0.858898
5 0.0628859 0.31443
6 0.128841 0.773046
7 0.0332457 0.23272
8 0.0866094 0.692875
9 0.0170324 0.153291
10 0.0613865 0.613865

Note that the Chern-Simons invariant of the hyperbolic orbifold
cs
(
X2m

2n (2πk )
)

is only defined modulo 1
k [7, Theorem 1.4] and we only get modulo 1

2k for
k odd [7, Theorem 1.4].
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