

Proceedings of the International Geometry Center Vol. 15, no. 3-4 (2022) pp. 219–229

Explicit formulae for Chern-Simons invariants of the hyperbolic J(2n, -2m)knot orbifolds

Ji-Young Ham, Joongul Lee

Abstract. We calculate the Chern-Simons invariants of the hyperbolic double twist knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of cone-manifold structures of double twist knots.

Анотація. В роботі обчислено інваріанти Черна-Саймонса гіперболічних орбіфолдів, що мають тип двічі скрученого вузла, використовуючи формулу Шлафлі для узагальненої функції Черна-Саймонса для сім'ї конусних структур двічі скручених вузлів.

1. INTRODUCTION

Chern-Simons invariants of hyperbolic knot orbifolds are computed explicitly for a few infinite families in [2–4] using the "Schläfli formula".

In this paper, we present the explicit formulae for Chern-Simons invariants of the hyperbolic double twist knot orbifolds and we present them numerically for some of double twist knot orbifolds. A brief history of Chern-Simons invariant can be found in [2–4]. A double twist knot is denoted by C(2n, 2m) according to Conway notation or by J(2n, -2m)according to Hoste-Shanahan notation. Figure 2 presents C(2n, 2m) for m, n > 0.

For a two-bridge hyperbolic link, there exists an angle $\alpha_0 \in [\frac{2\pi}{3}, \pi)$ for each link K such that the cone-manifold $K(\alpha)$ is hyperbolic for $\alpha \in (0, \alpha_0)$,

²⁰¹⁰ Mathematics Subject Classification: 57M25, 57M27.

Keywords: Chern-Simons invariant, double twist knot, orbifold, Riley-Mednykh polynomial, orbifold covering

Ключові слова: інваріант Черна-Саймонса, двічі скручений вузол, орбіфолд, многочлен Райлі-Мєдних, накриття орбіфолда

DOI: http://dx.doi.org/10.15673/tmgc.v15i3-4.2337

Euclidean for $\alpha = \alpha_0$, and spherical for $\alpha \in (\alpha_0, \pi]$, [5,9,11,12]. We will use the Chern-Simons invariant of the lens space L(4nm + 1, 2n(2m - 1) + 1)calculated in [7]. The following theorem gives the Chern-Simons invariant formulae for the hyperbolic C(2n, 2m) knots. Let $S_k(v)$ be the *Chebychev* polynomials defined by

$$S_0(v) = 1,$$
 $S_1(v) = v,$
 $S_k(v) = vS_{k-1}(v) - S_{k-2}(v),$

for all integers k.

Theorem 1.1. Let $X_{2n}^{2m}(\alpha)$ be the hyperbolic cone-manifold with underlying space S^3 and a singular set C(2n, 2m) of cone-angle $0 \leq \alpha < \alpha_0$. Let k be a positive integer such that k-fold cyclic covering of $X_{2n}^{2m}\left(\frac{2\pi}{k}\right)$ is hyperbolic. Then the Chern-Simons invariant of $X_{2n}^{2m}\left(\frac{2\pi}{k}\right) \pmod{\frac{1}{k}}$ if k is even or mod $\frac{1}{2k}$ if k is odd) is given by the following formula:

$$\begin{split} \operatorname{cs} & \left(X_{2n}^{2m} \left(\frac{2\pi}{k} \right) \right) \equiv \frac{1}{2} \operatorname{cs} \left(L(4nm+1, 2n(2m-1)+1) \right) + \\ & + \frac{1}{4\pi^2} \int_{\frac{2\pi}{k}}^{\alpha_0} \operatorname{Im} \left(2 * \log \left(-\frac{M^2(S_n(v) - S_{n-1}(v)) - (S_{n-1}(v) - S_{n-2}(v))}{(S_n(v) - S_{n-1}(v)) - M^2(S_{n-1}(v) - S_{n-2}(v))} \right) \right) d\alpha \\ & + \frac{1}{4\pi^2} \int_{\alpha_0}^{\pi} \operatorname{Im} \left(\log \left(-\frac{M^2(S_n(v_1) - S_{n-1}(v_1)) - (S_{n-1}(v_1) - S_{n-2}(v_1))}{(S_n(v_1) - S_{n-1}(v_1)) - M^2(S_{n-1}(v_1) - S_{n-2}(v_1))} \right) \right) d\alpha \\ & + \frac{1}{4\pi^2} \int_{\alpha_0}^{\pi} \operatorname{Im} \left(\log \left(-\frac{M^2(S_n(v_2) - S_{n-1}(v_2)) - (S_{n-1}(v_2) - S_{n-2}(v_2))}{(S_n(v_2) - S_{n-1}(v_2)) - M^2(S_{n-1}(v_2) - S_{n-2}(v_2))} \right) \right) d\alpha, \end{split}$$

where for $M = e^{\frac{i\alpha}{2}}$, x, x_1 , and x_2 are zeros of Riley-Mednykh polynomial $\phi_{2n}^{2m}(x, M)$ in Theorem 2.5. As α decreases to α_0 both x_1 and x_2 approach a common value x. One of x_1 and x_2 comes from the component of x, and the other comes from the component of \bar{x} . Moreover, v satisfies the inequality, [16, Lemma 3.9]:

$$\operatorname{Im}((S_n(v) - S_{n-1}(v))\overline{(S_{n-1}(v) - S_{n-2}(v))} \ge 0.$$

2. $C(2n, 2m)$ knots

A general reference for this section is [8]. A knot with 2n right-handed vertical crossings and 2m left-handed horizontal crossings as in Figure 2.1 is C(2n, 2m) knot according to Conway's notation. One can easily check that the slope of C(2n, 2m) is 2m/(4nm + 1) which is equivalent to the knot with slope (2n(2m - 1) + 1)/(4nm + 1) [14].

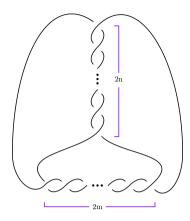


FIGURE 2.1. C(2n, 2m)

We will use the following presentation of the fundamental group of C(2n, 2m) knot(equivalently, J(2n, -2m) knot) in [8]. In [8], Hoste and Shanahan asked whether their presentation of the fundamental group for double twist knots can be derived from Schubert's canonical 2-bridge diagram or not. The following proposition can also be obtained by reading off the fundamental group from the Schubert normal form of C(2n, 2m) with slope 2m/(4nm+1) [13,14] which answers Hoste-Shanahan's question completely for C(2n, 2m) knots. Let X_{2n}^{2m} be $S^3 \setminus C(2n, 2m)$.

Proposition 2.1 ([4, Proposition2.2], [13, 14]).

$$\pi_1(X_{2n}^{2m}) = \left\langle s, t \mid sw^m t^{-1} w^{-m} = 1 \right\rangle,$$

where $w = (t^{-1}s)^n (ts^{-1})^n$.

2.2. The Chebychev polynomial. Let $S_k(v)$ be the Chebychev polynomials defined by $S_0(v) = 1$, $S_1(v) = v$ and $S_k(v) = vS_{k-1}(v) - S_{k-2}(v)$ for all integers k. The following explicit formula for $S_k(v)$ can be obtained by solving the above recurrence relation [17].

$$S_n(v) = \sum_{0 \leqslant i \leqslant \lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n-i}{i} v^{n-2i}$$

for $n \ge 0$, $S_n(v) = -S_{-n-2}(v)$ for $n \le -2$, and $S_{-1}(v) = 0$. The following proposition 2.3 can be proved using the Cayley-Hamilton theorem [15].

Proposition 2.3 ([15, Proposition 2.4]). Suppose $V = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{C})$. Then

$$V^{k} = \begin{bmatrix} S_{k}(v) - dS_{k-1}(v) & bS_{k-1}(v) \\ cS_{k-1}(v) & S_{k}(v) - aS_{k-1}(v) \end{bmatrix}$$

where v = tr(V) = a + d.

2.4. The Riley-Mednykh polynomial. Let

$$\rho(s) = \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix}, \qquad \qquad \rho(t) = \begin{bmatrix} M & 0 \\ 2 - v & M^{-1} \end{bmatrix},$$

and let

$$c = \begin{bmatrix} 0 & -(\sqrt{2-v})^{-1} \\ \sqrt{2-v} & 0 \end{bmatrix}.$$

Then from the above Proposition 2.3, we get the following Theorem 2.5 which can be found in [16]. We include the proof for readers' convenience. Let $\rho(s) = S$, $\rho(t) = T$, and $\rho(w) = W$. Then $\operatorname{tr}(T^{-1}S) = v = \operatorname{tr}(TS^{-1})$. Let also $v = x + M^2 + M^{-2}$.

Theorem 2.5 ([16]). ρ is a representation of $\pi_1(X_{2n}^{2m})$ if and only if x is a root of the following Riley-Mednykh polynomial,

$$\phi_{2n}^{2m}(x,M) = S_m(z) + \left[-1 + xS_{n-1}(v)(S_n(v) + (1-v)S_{n-1}(v))\right]S_{m-1}(z).$$

Proof. Since

$$T^{-1}S = \begin{bmatrix} 1 & M^{-1} \\ M(M^{-2} + (x-2) + M^2) & M^{-2} + x - 1 + M^2 \end{bmatrix},$$

$$TS^{-1} = \begin{bmatrix} 1 & -M \\ -M^{-1}(M^{-2} + (x-2) + M^2) & M^{-2} + x - 1 + M^2 \end{bmatrix},$$

we have that

$$(T^{-1}S)^{n} = \begin{bmatrix} S_{n}(v) - (v-1)S_{n-1}(v) & M^{-1}S_{n-1}(v) \\ M(v-2)S_{n-1}(v) & S_{n}(v) - S_{n-1}(v) \end{bmatrix},$$

$$(TS^{-1})^{n} = \begin{bmatrix} S_{n}(v) - (v-1)S_{n-1}(v) & -MS_{n-1}(v) \\ -M^{-1}(v-2)S_{n-1}(v) & S_{n}(v) - S_{n-1}(v) \end{bmatrix}.$$

Hence

$$W = (T^{-1}S)^n (TS^{-1})^n = \begin{bmatrix} W_{11} & W_{12} \\ (2-v)W_{12} & W_{22} \end{bmatrix},$$

where

$$W_{11} = S_n^2(v) + (2 - 2v)S_n(v)S_{n-1}(v) + + (1 + 2M^{-2} - 2v - M^{-2}v + v^2)S_{n-1}^2(v),$$

$$W_{12} = (M^{-1} - M)S_n(v)S_{n-1}(v) + (Mv - M - M^{-1})S_{n-1}^2(v),$$

$$W_{22} = S_n^2(v) - 2S_n(v)S_{n-1}(v) + (1 + 2M^2 - M^2v)S_{n-1}^2(v).$$

Let z = tr(W). Then, since $S_n^2(v) - vS_n(v)S_{n-1}(v) + S_{n-1}^2(v) = 1$ (by [18, Lemma 2.1] or by induction),

$$z = W_{11} + W_{22} =$$

= $2(S_n^2(v) - vS_n(v)S_{n-1}(v) + S_{n-1}^2(v)) +$
+ $(2M^{-2} + 2M^2 - 2v - M^{-2}v - M^2v + v^2) S_{n-1}^2(v)$
= $2 + (v - 2)xS_{n-1}^2(v).$

By Proposition 2.3, we have

$$(W)^{m} = \begin{bmatrix} S_{m}(z) - W_{22}S_{m-1}(z) & W_{12}S_{m-1}(z) \\ (2-v)W_{12}S_{m-1}(z) & S_{m}(z) - W_{11}S_{m-1}(z) \end{bmatrix}.$$

Therefore

$$\operatorname{tr}(SW^{m}c)/\sqrt{2-v} = \left((M-M^{-1}) W_{12}S_{m-1}(z) + S_{m}(z) - W_{11}S_{m-1}(z) \right)$$

gives $\phi_{2n}^{2m}(x,M)$, [4].

3. Longitude

Let $l = w^m (w^*)^m$, where w^* is the word obtained by reversing w. Then l is the longitude which is null-homologous in X_{2n}^{2m} . Recall that $\rho(w) = W$. Let also $\widetilde{W} = \rho(w^*)$. Then it is easy to see that \widetilde{W} can be written as

$$\widetilde{W} = \begin{bmatrix} \widetilde{W}_{22} & \widetilde{W}_{12} \\ (2-v)\widetilde{W}_{12} & \widetilde{W}_{11} \end{bmatrix},$$

where \tilde{W}_{ij} is obtained by W_{ij} by replacing M with M^{-1} . Similar computation was introduced in [8]. Hence,

$$\tilde{W}_{11} = S_n^2(v) + (2 - 2v) S_n(v) S_{n-1}(v) + + (1 + 2M^2 - 2v - M^2 v + v^2) S_{n-1}^2(v),$$

$$\tilde{W}_{12} = (M - M^{-1}) S_n(v) S_{n-1}(v) + (M^{-1}v - M^{-1} - M) S_{n-1}^2(v),$$

$$\tilde{W}_{22} = S_n^2(v) - 2S_n(v) S_{n-1}(v) + (1 + 2M^{-2} - M^{-2}v) S_{n-1}^2(v).$$

The following lemma was introduced in [8] with slightly different coordinates. Let $L = \rho(l)_{11}$ be the left upper entry of $\rho(l)$.

Lemma 3.1 ([8]). $W_{21}L + \tilde{W}_{21} = 0.$

Theorem 3.2.

$$L = -\frac{M^2 \left(S_n(v) - S_{n-1}(v)\right) - \left(S_{n-1}(v) - S_{n-2}(v)\right)}{\left(S_n(v) - S_{n-1}(v)\right) - M^2 \left(S_{n-1}(v) - S_{n-2}(v)\right)}.$$

Proof. A direct computation shows that $W_{21}L + \tilde{W}_{21} = 0$ in Lemma 3.1. Now theorem follows by substituting $S_n(v) + S_{n-2}(v)$ for $vS_{n-1}(v)$.

4. Schläfli formula for the generalized Chern-Simons function

The general references for this section are [2, 3, 6, 7, 10, 19] and [4].

In [6], Hilden, Lozano, and Montesinos-Amilibia defined the *generalized Chern-Simons function* on the oriented cone-manifold structures which matches up with the Chern-Simons invariant when the cone-manifold is the Riemannian manifold.

Below, we briefly introduce the generalized Chern-Simons function on the family of C(2n, 2m) cone-manifold structures. For an oriented knot C(2n, 2m), we orient its chosen meridian s such that the orientation of s followed by the orientation of C(2n, 2m) coincides with orientation of \mathbb{S}^3 . Here, we use the definition of the lens space in [7] so that we can have the right orientation when it is combined with the following frame field.

On the Riemannian manifold

$$\mathbb{S}^3 - C(2n, 2m) - s$$

we choose a special frame field $\Gamma = (e_1, e_2, e_3)$ which is an orthonormal frame field such that for each point x near C(2n, 2m), $e_1(x)$ has the direction given by knot's orientation, $e_2(x)$ has the tangent direction of the meridian curve, and $e_3(x)$ has the knot to point x direction. Such a special frame field always exists by [6, Proposition 3.1]. From Γ we obtain an orthonormal frame field Γ_{α} on $X_{2n}^{2m}(\alpha) - s$ by the Gram-Schmidt orthogonalization process with respect to the Riemannian structure of the cone manifold $X_{2n}^{2m}(\alpha)$. Moreover, it can be made special by deforming it in a neighborhood of the singular set C(2n, 2m) and s, if necessary. Thus, Γ' is an extension of Γ to $S^3 - C(2n, 2m)$. To the cone-manifold $X_{2n}^{2m}(\alpha)$, we assign the following real number

$$I\left(X_{2n}^{2m}(\alpha)\right) = \frac{1}{2} \int_{\Gamma(S^3 - T_{2n} - s)} Q - \frac{1}{4\pi}\tau(s, \Gamma') - \frac{1}{4\pi}\left(\frac{\beta\alpha}{2\pi}\right),$$

where $-2\pi \leq \beta \leq 2\pi$ is the angle of the lifted holonomy of the singular locus of $X_{2n}^{2m}(\alpha)$, Q is the Chern-Simons form:

$$Q = \frac{1}{4\pi^2} \left(\theta_{12} \wedge \theta_{13} \wedge \theta_{23} + \theta_{12} \wedge \Omega_{12} + \theta_{13} \wedge \Omega_{13} + \theta_{23} \wedge \Omega_{23} \right),$$

and

$$\tau(s,\Gamma') = -\int_{\Gamma'(s)} \theta_{23},$$

where (θ_{ij}) is the connection 1-form, (Ω_{ij}) is the curvature 2-form of the Riemannian connection on $X_{2n}^{2m}(\alpha)$ and the integral is over the orthonormalizations of the same frame field. When $\alpha = \frac{2\pi}{k}$ for some positive integer, $I\left(X_{2n}^{2m}\left(\frac{2\pi}{k}\right)\right) \pmod{\frac{1}{k}}$ if k is even or mod $\frac{1}{2k}$ if k is odd) is independent of the frame field Γ and of the representative in the equivalence class $\overline{\beta}$ and hence becomes an invariant of the orbifold $X_{2n}^{2m}\left(\frac{2\pi}{k}\right)$. The quantity $I\left(X_{2n}^{2m}\left(\frac{2\pi}{k}\right)\right)$ (mod $\frac{1}{k}$ if k is even or mod $\frac{1}{2k}$ if k is odd) is called the Chern-Simons invariant of the orbifold and is denoted by $\operatorname{cs}\left(X_{2n}^{2m}\left(\frac{2\pi}{k}\right)\right)$.

We have the following "Schläfli formula" for the generalized Chern-Simons function on the family of C(2n, 2m) cone-manifold structures.

Theorem 4.1 ([7, Theorem 1.2]). For a family of geometric cone-manifold structures, $X_{2n}^{2m}(\alpha)$, and differentiable functions $\alpha(t)$ and $\beta(t)$ of t we have

$$dI\left(X_{2n}^{2m}(\alpha)\right) = -\frac{1}{4\pi^2}\,\beta d\alpha.$$

5. Proof of Theorem 1.1

For $n \ge 1$ and $M = e^{i\frac{\alpha}{2}}$, $\phi_{2n}^{2m}(x, M)$ have 2mn component zeros. The component passing through

$$(x_1, x_2) = \left(2 - 2\cos\left(\frac{\pi(2m+1)}{4nm+1}\right), 2 - 2\cos\left(\frac{\pi(2m-1)}{4nm+1}\right)\right)$$

at $\alpha = \pi$ is the geometric component by [7, Theorem 2.1]. Note that $2 - x_1 > 0$ and $2 - x_2 > 0$. For each C(2n, 2m), there exists an angle $\alpha_0 \in [\frac{2\pi}{3}, \pi)$ such that C(2n, 2m) is hyperbolic for $\alpha \in (0, \alpha_0)$, Euclidean for $\alpha = \alpha_0$, and spherical for $\alpha \in (\alpha_0, \pi]$, [5,9,11,12]. Denote by $D(X_{2n}^{2m}(\alpha))$ the set of zeros of the discriminant of $\phi_{2n}^{2m}(x, e^{i\frac{\alpha}{2}})$ over x. Then α_0 will be one of $D(X_{2n}^{2m}(\alpha))$.

On the geometric component we can calculate the Chern-Simons invariant of an orbifold $X_{2n}^{2m}\left(\frac{2\pi}{k}\right) \mod \frac{1}{k}$ if k is even or $\mod \frac{1}{2k}$ if k is odd), where k is a positive integer such that k-fold cyclic covering of $X_{2n}^{2m}\left(\frac{2\pi}{k}\right)$ is hyperbolic:

$$\begin{aligned} \operatorname{cs} \left(X_{2n}^{2m} \left(\frac{2\pi}{k} \right) \right) &\equiv I \left(X_{2n}^{2m} \left(\frac{2\pi}{k} \right) \right) \left(\operatorname{mod} \frac{1}{k} \right) \\ &\equiv I \left(X_{2n}^{2m} (\pi) \right) + \frac{1}{4\pi^2} \int_{\frac{2\pi}{k}}^{\pi} \beta \, d\alpha \, \left(\operatorname{mod} \frac{1}{k} \right) \\ &\equiv \frac{1}{2} \operatorname{cs} \left(L(4nm+1, 2n(2m-1)+1) \right) + \\ &+ \frac{1}{4\pi^2} \int_{\frac{2\pi}{k}}^{\alpha_0} \operatorname{Im} \left(2 * \log \left(-\frac{M^2(S_n(v) - S_{n-1}(v)) - (S_{n-1}(v) - S_{n-2}(v))}{(S_n(v) - S_{n-1}(v)) - M^2(S_{n-1}(v) - S_{n-2}(v))} \right) \right) d\alpha \end{aligned}$$

$$+ \frac{1}{4\pi^2} \int_{\alpha_0}^{\pi} \operatorname{Im} \left(\log \left(-\frac{M^2(S_n(v_1) - S_{n-1}(v_1)) - (S_{n-1}(v_1) - S_{n-2}(v_1))}{(S_n(v_1) - S_{n-1}(v_1)) - M^2(S_{n-1}(v_1) - S_{n-2}(v_1))} \right) \right) d\alpha$$

$$+ \frac{1}{4\pi^2} \int_{\alpha_0}^{\pi} \operatorname{Im} \left(\log \left(-\frac{M^2(S_n(v_2) - S_{n-1}(v_2)) - (S_{n-1}(v_2) - S_{n-2}(v_2))}{(S_n(v_2) - S_{n-1}(v_2)) - M^2(S_{n-1}(v_2) - S_{n-2}(v_2))} \right) \right) d\alpha,$$

 $(\mod \frac{1}{k} \text{ if } k \text{ is even or mod } \frac{1}{2k} \text{ if } k \text{ is odd}),$

where the second equivalence comes from Theorem 4.1 and the third equivalence comes from the fact that

$$I(X_{2n}^{2m}(\pi)) \equiv \frac{1}{2} \operatorname{cs}(L(4nm+1, 2n(2m-1)+1)) \pmod{\frac{1}{2}},$$

from Theorem 3.2, and from geometric interpretations of hyperbolic and spherical holonomy representations.

The following theorem gives the Chern-Simons invariant of the Lens space L(4nm + 1, 2n(2m - 1) + 1).

Theorem 5.1 ([7, Theorem 1.3]).

$$\operatorname{cs}(L(4nm+1,2n(2m-1)+1)) \equiv \frac{m-n}{4nm+1} \pmod{1}.$$

6. Chern-Simons invariants of the hyperbolic C(2n, 2m) knot orbifolds and of its cyclic coverings

Table 6.1 gives the approximate Chern-Simons invariant of C(2n, 2m) for n between 1 and 4, m between 1 and 4 with $n \ge m$. Since C(2, 2), C(4, 4), C(6, 6), C(8, 8) are amphicheiral knots, their Chern-Simons invariants are zero as expected. We used Simpson's rule for the approximation with 2×10^4 (10^4 in Simpson's rule) intervals from 0 to α_0 and 2×10^4 (10^4 in Simpson's rule) intervals from 0 to α_0 and 2×10^4 (10^4 in Simpson's rule) intervals from α_0 to π . Table 6.2 gives the approximate Chern-Simons invariant of the hyperbolic orbifold, $cs(X_{2n}^{2m}(\frac{2\pi}{k}))$ for n between 1 and 4, m between 1 and 4 with $n \ge m$, and for k between 3 and 10, and of its cyclic covering, $cs(M_k(X_{2n}^{2m}))$ except amphicheiral knots. We used Simpson's rule for the approximation with 2×10^2 (10^2 in Simpson's rule) intervals from α_0 to π .

We used Mathematica for the calculations. We record here that our data in Table 6.1 and those obtained from SnapPy [1] match up up to existing decimal points and our data in Table 6.2. For computational reasons, we need α_0 being the bifurcation point of the geometric solution of the Riley-Mednykh polynomial as described in Theorem 1.1. TABLE 6.1. Chern-Simons invariant of X_{2n}^{2m} for n between 1 and 4, m between 1 and 4 with $n \ge m$ except amphicheiral knots:

2n	2m	α_0	$\operatorname{cs}(X_{2n}^{2m})$
2	2	2.094395102393195	0
4	2	2.574140778131840	0.34402298
6	2	2.750685152010280	0.27786688
8	2	2.843209532683532	0.24222232
4	4	2.847642272262783	0
6	4	2.942465754372979	0.42782933
8	4	2.990939179603150	0.38923730
6	6	3.007517657179940	0
8	6	3.040474611156828	0.46103929
8	8	3.065453796328835	0

TABLE 6.2. Chern-Simons invariant of the hyperbolic orbifold, $\operatorname{cs}\left(X_{2n}^{2m}\left(\frac{2\pi}{k}\right)\right) \pmod{\frac{1}{k}}$ if k is even or $\operatorname{mod}\frac{1}{2k}$ if k is odd) for n between 1 and 4, m between 1 and 4 with $n \ge m$, and for k between 3 and 10, and of its cyclic covering, $\operatorname{cs}\left(M_k(X_{2n}^{2m})\right)$ except amphicheiral knots:

1	$(v_2(2\pi))$	$(M(\mathbf{v}^2))$		1	$(v_2(2\pi))$	$(\mathbf{M}(\mathbf{v}^2))$
k	$\operatorname{cs}(X_4^2(\frac{2\pi}{k}))$	$\operatorname{cs}(M_k(X_4^2))$		k	$\operatorname{cs}\left(X_6^2(\frac{2\pi}{k})\right)$	$\operatorname{cs}(M_k(X_6^2))$
3	0.0875301	0.26259		3	0.0449535	0.13486
4	0.144925	0.579699		4	0.0876043	0.350417
5	0.0784576	0.392288		5	0.0165337	0.0826684
6	0.0351571	0.210943		6	0.138167	0.829004
7	0.00506505	0.0354553		7	0.0120078	0.0840545
8	0.108039	0.864313		8	0.0430876	0.3447
9	0.0218112	0.196301		9	0.012125	0.109125
10	0.0530574	0.530574		10	0.0876213	0.876213
k	$\operatorname{cs}\left(X_8^2(\frac{2\pi}{k})\right)$	$\operatorname{cs}(M_k(X_8^2))$		k	$\operatorname{cs}\left(X_6^4(\frac{2\pi}{k})\right)$	$\operatorname{cs}(M_k(X_6^4))$
3	0.0161266	0.0483799		3	0.125912	0.377736
4	0.0536832	0.214733		4	0.192764	0.771058
5	0.0817026	0.408513		5	0.0360431	0.180216
6	0.103012	0.618074		6	0.0996796	0.598077
7	0.0481239	0.336867		7	0.00284328	0.0199029
8	0.00768503	0.0614802		8	0.0554674	0.443739
9	0.032221	0.289989		9	0.0409685	0.368717
10	0.0521232	0.521232		10	0.0294401	0.294401

k	$\operatorname{cs}(X_8^4(\frac{2\pi}{k}))$	$\operatorname{cs}(M_k(X_8^4))$	k	$\operatorname{cs}(X_8^6(\frac{2\pi}{k}))$	$\operatorname{cs}(M_k(X_8^6))$
3	0.098074	0.294222	3	0.138854	0.416562
4	0.157843	0.631371	4	0.214725	0.858898
5	0.0993608	0.496804	5	0.0628859	0.31443
6	0.0622858	0.373715	6	0.128841	0.773046
7	0.0365103	0.255572	7	0.0332457	0.23272
8	0.0174882	0.139906	8	0.0866094	0.692875
9	0.00284881	0.0256393	9	0.0170324	0.153291
10	0.091224	0.91224	10	0.0613865	0.613865

Note that the Chern-Simons invariant of the hyperbolic orbifold

$$\operatorname{cs}\left(X_{2n}^{2m}(\tfrac{2\pi}{k})\right)$$

is only defined modulo $\frac{1}{k}$ [7, Theorem 1.4] and we only get modulo $\frac{1}{2k}$ for k odd [7, Theorem 1.4].

Acknowledgement. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2018R1A2B6005847). The second author was supported by 2019 Hongik University Research Fund. The authors would like to thank Alexander Mednykh, Nathan Dunfield, and Darren Long.

References

- Marc Culler, Nathan Dunfield, Jeff Weeks, and many others. SnapPy. http://www. math.uic.edu/t3m/SnapPy/.
- [2] Ji-Young Ham and Joongul Lee. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots. *Mat. Sb.*, 207(9):144–160, 2016. doi:10.4213/sm8610.
- [3] Ji-Young Ham and Joongul Lee. Explicit formulae for Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3). Lett. Math. Phys., 107(3):427–437, 2017. doi:10.1007/s11005-016-0904-0.
- [4] Ji-Young Ham, Joongul Lee, Alexander Mednykh, and Aleksei Rasskazov. On the volume and Chern-Simons invariant for 2-bridge knot orbifolds. J. Knot Theory Ramifications, 26(12):1750082, 22, 2017. doi:10.1142/S0218216517500821.
- [5] Hugh Hilden, María Teresa Lozano, and José María Montesinos-Amilibia. On a remarkable polyhedron geometrizing the figure eight knot cone manifolds. J. Math. Sci. Univ. Tokyo, 2(3):501–561, 1995. URL: https://www.ms.u-tokyo.ac.jp/journal/pdf/ jms020301.pdf.
- [6] Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia. On volumes and Chern-Simons invariants of geometric 3-manifolds. J. Math. Sci. Univ. Tokyo, 3(3):723–744, 1996. URL: https://www.ms.u-tokyo.ac.jp/journal/pdf/jms030310.pdf.
- [7] Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia. Volumes and Chern-Simons invariants of cyclic coverings over rational knots. In *Topology and*

Teichmüller spaces (Katinkulta, 1995), pages 31–55. World Sci. Publ., River Edge, NJ, 1996. doi:10.1142/9789814503921_0003.

- [8] Jim Hoste and Patrick D. Shanahan. A formula for the A-polynomial of twist knots. J. Knot Theory Ramifications, 13(2):193–209, 2004. doi:10.1142/S0218216504003081.
- [9] Sadayoshi Kojima. Deformations of hyperbolic 3-cone-manifolds. J. Differential Geom., 49(3):469–516, 1998. doi:10.4310/jdg/1214461108.
- [10] Robert Meyerhoff and Daniel Ruberman. Mutation and the η-invariant. J. Differential Geom., 31(1):101–130, 1990. doi:10.4310/jdg/1214444091.
- [11] Joan Porti. Spherical cone structures on 2-bridge knots and links. Kobe J. Math., 21(1-2):61-70, 2004.
- [12] Joan Porti and Hartmut Weiss. Deforming Euclidean cone 3-manifolds. Geom. Topol., 11:1507–1538, 2007. doi:10.2140/gt.2007.11.1507.
- [13] Robert Riley. Parabolic representations of knot groups. I. Proc. London Math. Soc. (3), 24:217–242, 1972.
- [14] Horst Schubert. Knoten mit zwei Brücken. Math. Z., 65:133–170, 1956. doi:10.1007/ BF01473875.
- [15] Anh T. Tran. Reidemeister torsion and Dehn surgery on twist knots. *Tokyo J. Math.*, 39(2):517–526, 2016. doi:10.3836/tjm/1484903134.
- [16] Anh T. Tran. Volumes of hyperbolic double twist knot cone-manifolds. J. Knot Theory Ramifications, 26(11):1750068, 14, 2017. doi:10.1142/S0218216517500687.
- [17] Anh T. Tran. The A-polynomial 2-tuple of twisted Whitehead links. Internat. J. Math., 29(2):1850013, 14, 2018. doi:10.1142/S0129167X18500131.
- [18] Anh T. Tran. Twisted Alexander polynomials of genus one two-bridge knots. Kodai Math. J., 41(1):86–97, 2018. doi:10.2996/kmj/1521424825.
- [19] Tomoyoshi Yoshida. The η -invariant of hyperbolic 3-manifolds. Invent. Math., 81(3):473–514, 1985. doi:10.1007/BF01388583.

Received: September 1, 2022.

Ji-Young Ham

School of Liberal Arts, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Korea 01811

DEPARTMENT OF ARCHITECTURE, KONKUK UNIVERSITY, 120 NEUNGDONG-RO, GWANGJIN-GU, SEOUL, KOREA 05029

Email: jiyoungham1@gmail.com

ORCID: 0000-0001-8454-9647

Joongul Lee

DEPARTMENT OF MATHEMATICS EDUCATION, HONGIK UNIVERSITY, 94 WAUSAN-RO, MAPO-GU, SEOUL, KOREA 04066

Email: jglee@hongik.ac.kr

ORCID: 0000-0001-6708-9423