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Explicit formulae for Chern-Simons
invariants of the hyperbolic J(2n, —2m)
knot orbifolds

Ji-Young Ham, Joongul Lee

Abstract. We calculate the Chern-Simons invariants of the hyperbolic dou-
ble twist knot orbifolds using the Schléfli formula for the generalized Chern-
Simons function on the family of cone-manifold structures of double twist
knots.

Amnorargiszi. B pobori obuncieno imBapiantu Yepna-CaiiMonca rinep6ouri-
gHEX 0p6ihOIAiB, 0 MAIOTH THII JIBitUi CKPYYEHOrO BY3J1a, BAKOPUCTOBYIOUN
dbopmyny Hlnadiai gna yzarambaenol dyukiii Yepra-Caiimomnca aas cim’i
KOHYCHUX CTPYKTYP [IBidi CKPYy4YEHUX BY3JIiB.

1. INTRODUCTION

Chern-Simons invariants of hyperbolic knot orbifolds are computed ex-
plicitly for a few infinite families in [2-4| using the “Schléfli formula”.

In this paper, we present the explicit formulae for Chern-Simons invari-
ants of the hyperbolic double twist knot orbifolds and we present them
numerically for some of double twist knot orbifolds. A brief history of
Chern-Simons invariant can be found in [2-4]. A double twist knot is
denoted by C(2n,2m) according to Conway notation or by J(2n,—2m)
according to Hoste-Shanahan notation. Figure 2 presents C(2n,2m) for
m,n > 0.

For a two-bridge hyperbolic link, there exists an angle ag € [%”, ) for
each link K such that the cone-manifold K («) is hyperbolic for a € (0, ap),
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Euclidean for oo = oy, and spherical for « € (ag, 7], [5,9,11,12]. We will use
the Chern-Simons invariant of the lens space L(4nm + 1,2n(2m — 1) + 1)
calculated in [7]. The following theorem gives the Chern-Simons invariant
formulae for the hyperbolic C(2n,2m) knots. Let Si(v) be the Chebychev
polynomials defined by

So(v) =1, Si(v) = v,
Sk(v) = vSk_1(v) — Sk—2(v),

for all integers k.

Theorem 1.1. Let X3™(«) be the hyperbolic cone-manifold with underlying

space S and a singular set C(2n,2m) of cone-angle 0 < a < . Let k be
a positive integer such that k-fold cyclic covering of X%}f(%”) 1$ hyperbolic.
Then the Chern-Simons invariant of X%];”(%’T) (mod % if k is even or mod

i if k is odd) is given by the following formula:

cs(X%,T(%’T)) = %CS(L(ZLTLTTL +1,2n(2m —1) 4+ 1))+

T (2w o [ MPS0(0) = 811 (0)) = (Bua(0) = Sz Y 4

tae) I <2 1 g( (Sn(0) = Su1(v)) — M2(Sp1(v) - s“(v)))) !
&

e (000 = Saca () = (Suea(00) = Sz 4,

" 47TQJOI (1 g( (Sn(v1) = Sp—1(v1)) = M2(Sp-1(v1) — Snz(vl)))> I
L _ M2(S0(v2) = Sa-1(02)) = (Su1(v2) = Su-a(v2))

e f tm (k’g ( (Sn(v2) — Su_1(v2)) — M2(Sp_1(v3) — Sn_z<vz>>)> o

where for M = e%, x, T1, and xo are zeros of Riley-Mednykh polynomial
<Z>%nm(:v,M) in Theorem 2.5. As a decreases to o both x1 and xo approach
a common value x. One of x1 and xo comes from the component of x,
and the other comes from the component of T. Moreover, v satisfies the
inequality, [16, Lemma 3.9):

Im ((Sp(v) = Sn—1(v)) (Sn—1(v) — Sn—2(v)) = 0.

2. C(2n,2m) KNOTS

A general reference for this section is [8]. A knot with 2n right-handed
vertical crossings and 2m left-handed horizontal crossings as in Figure 2.1
is C'(2n,2m) knot according to Conway’s notation. One can easily check
that the slope of C(2n,2m) is 2m/(4nm + 1) which is equivalent to the
knot with slope (2n(2m — 1)+ 1) /(4dnm + 1) [14].
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FIGURE 2.1. C(2n,2m)

We will use the following presentation of the fundamental group of
C(2n,2m) knot(equivalently, J(2n,—2m) knot) in [8]. In [8], Hoste and
Shanahan asked whether their presentation of the fundamental group for
double twist knots can be derived from Schubert’s canonical 2-bridge di-
agram or not. The following proposition can also be obtained by reading
off the fundamental group from the Schubert normal form of C(2n,2m)
with slope 2m/(4nm+1) [13,14] which answers Hoste-Shanahan’s question
completely for C(2n,2m) knots. Let X2™ be S3\C(2n,2m).

Proposition 2.1 ([4, Proposition2.2|, [13,14]).
(X3 = (s, t | sw™t w T = 1),
where w = (t~1s)"(ts~1)".

2.2. The Chebychev polynomial. Let Si(v) be the Chebychev polyno-
mials defined by Sp(v) =1, S1(v) = v and Si(v) = vSg_1(v) — Sk—2(v) for
all integers k. The following explicit formula for Si(v) can be obtained by
solving the above recurrence relation [17].

S _ _1)\¢ n—21
= % (")

0<i<| 5|
for n =0, Sp(v) = =S_p_a(v) for n < =2, and S_;(v) = 0. The following
proposition 2.3 can be proved using the Cayley-Hamilton theorem [15].
Proposition 2.3 ([15, Proposition 2.4]). Suppose V = [¢}] € SLy(C).

Then
vk _ Si(v) — dSk_1(v) bSk_1(v) ]
¢Sk—1(v) Sk(v) — aSk_1(v)



222 J. Ham, J. Lee

where v =tr(V) = a +d.
2.4. The Riley-Mednykh polynomial. Let
M 1 ]

P = [0 ae S

o=,

and let

V2—-v 0
Then from the above Proposition 2.3, we get the following Theorem 2.5
which can be found in [16]. We include the proof for readers’ convenience.
Let p(s) = S, p(t) = T, and p(w) = W. Then tr(T1S) = v = tr(TS™1).
Let also v =2 + M? + M2

[ Y.

Theorem 2.5 ([16]). p is a representation of w1 (X3™) if and only if x is
a root of the following Riley-Mednykh polynomial,

o (2, M) = Spn(2) + [~1 + 2Sp-1(0)(Sn(v) + (1 = 1)Sn-1(0))] Sm-1(2).

Proof. Since

TS = ! M
N MM™2+(x—-2)+M?*) M 24+x—-1+M?]’

TS™! = ! —M
MY M2+ (2 —-2)+M?) M 24+x—1+M?|’

we have that

e [Sa@) = 0= DSui(v) M8,y (v)
T9) ‘[ M(v—2)Sy_1 () snw)—snl(v)]’
1 Sp(v) — (v —1)Sy-1(v) —MS,_1(v)
(s = [—M—1<v—2>sn_1<v> Snw)—sn_l(v)]'
Hence
W= @SSy = |, _M:l)lwlz %ﬂ
where

Wi = S2(v) + (2 — 20) 5, (v)Sp_1(v)+

+ (1 +2M2 =20 — M 20 +0%)S2_,(v),
Wia = (M~ = M)S,(v)Sp_1(v) + (Mv — M — M~1S% | (v),
Was = S2(v) — 28, (v)Sn_1(v) + (1 +2M? — M?v)S2_,(v).
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Let z = tr(W). Then, since S2(v) — vS,(v)Sn—1(v) + S2_;(v) =1 (by [18,
Lemma 2.1] or by induction),

z =W+ Wy =
= 2(S2(v) — vSn(v)Sn_1(v) + S2_1(v))+
+(2M 72 +2M? — 20— M~%v — M?v +v%) S2_,(v)
=24 (v—2)z5%_|(v).
By Proposition 2.3, we have
Sm(2) — WaaSpm—1(2) Wi2Sm—1(2)

) = o o) WiaSm1(2)  Sun2) — Wit Som1(2)]
Therefore
tr(SW™e)/v/2 —v = (M — M) Wi2Sn_1(2) + Sm(z) — Wi1Sm—1(2))
gives @27 (z, M), [4]. O

3. LONGITUDE

Let | = w™(w*)™, where w* is the word obtained by reversing w. Then
[ is the longitude which is null-homologous in X2™. Recall that p(w) = W.

~

Let also W = p(w*). Then it is easy to see that W can be written as
Was Wu]

~

W = - ~
(2 — U)W12 W11

where Wij is obtained by W;; by replacing M with M —1. Similar compu-
tation was introduced in [8]|. Hence,

Wi = S2(v) + (2 — 20) S, (v)Sp_1(v)+

+ (1 + OM? — 20 — M?v + vz) S,Ql_l(v),
Wia=(M - M1)S,(v)Sy_1(v) + (M v — Mt —M)S2 | (v),
Wag = 57 (v) = 28,(0)Sn1(v) + (14+2M 7> = M) 57 (v).

The following lemma was introduced in [8] with slightly different coordi-
nates. Let L = p(1)11 be the left upper entry of p(I).

Lemma 3.1 ([8]) Wor1L + W21 =0.

Theorem 3.2.




224 J. Ham, J. Lee

Proof. A direct computation shows that Wo L + Wzl = 0 in Lemma 3.1.
Now theorem follows by substituting Sy, (v) + S,—2(v) for vS,_1(v). O

4. SCHLAFLI FORMULA FOR THE GENERALIZED CHERN-SIMONS FUNCTION

The general references for this section are [2,3,6,7,10,19] and [4].

In [6], Hilden, Lozano, and Montesinos-Amilibia defined the generali-
zed Chern-Simons function on the oriented cone-manifold structures which
matches up with the Chern-Simons invariant when the cone-manifold is the
Riemannian manifold.

Below, we briefly introduce the generalized Chern-Simons function on
the family of C(2n,2m) cone-manifold structures. For an oriented knot
C(2n,2m), we orient its chosen meridian s such that the orientation of s
followed by the orientation of C'(2n,2m) coincides with orientation of S3.
Here, we use the definition of the lens space in [7]| so that we can have the
right orientation when it is combined with the following frame field.

On the Riemannian manifold

S?—C(2n,2m) — s

we choose a special frame field I' = (e1, e, e3) which is an orthonormal
frame field such that for each point x near C'(2n,2m), e;(z) has the di-
rection given by knot’s orientation, ex(z) has the tangent direction of the
meridian curve, and ez(x) has the knot to point x direction. Such a spe-
cial frame field always exists by [6, Proposition 3.1]. From I" we obtain an
orthonormal frame field 'y, on X327 (a) — s by the Gram-Schmidt orthog-
onalization process with respect to the Riemannian structure of the cone
manifold X3™(«). Moreover, it can be made special by deforming it in a
neighborhood of the singular set C(2n,2m) and s, if necessary. Thus, TV
is an extension of T' to S% — C(2n,2m). To the cone-manifold X327 (a), we
assign the following real number

TEgre) =4 [ Q- ke - (3
T(S3—Tap—s)

where —27 < § < 2 is the angle of the lifted holonomy of the singular
locus of X2™ (), @ is the Chern-Simons form:

Q= #(912 A 013 A B2 + b12 A Qg + 013 A Qi3+ ba3 A Qag),

and

o)== o
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where (6;;) is the connection 1-form, (€2;;) is the curvature 2-form of the
Riemannian connection on X3™(«) and the integral is over the orthonor-
malizations of the same frame field. When o = 2% for some positive integer,
I(X3™(2F)) (mod  if k is even or mod o if k is odd) is independent of the
frame field I" and of the representative in the equivalence class 8 and hence
becomes an invariant of the orbifold X327 (2%). The quantity I (X2 (2))
(mod ¢ if k is even or mod 5 if k is odd) is called the Chern-Simons
invariant of the orbifold and is denoted by cs (X%,T(%r))

We have the following “Schlifli formula” for the generalized Chern-Simons
function on the family of C(2n,2m) cone-manifold structures.

Theorem 4.1 ([7, Theorem 1.2]). For a family of geometric cone-manifold
structures, X3™(«), and differentiable functions a(t) and B(t) of t we have

dI (X3 (a)) = —%5 Bda.

5. PROOF OF THEOREM 1.1

Forn >1and M = e’%, QS%ZI(l’,M) have 2mn component zeros. The
component passing through

(x1,22) = (2 — 2cos (W), 2 —2cos (W))

at @ = m is the geometric component by |7, Theorem 2.1]. Note that
2—x1 > 0and 2 —x2 > 0. For each C(2n,2m), there exists an angle
ap € [2F, m) such that C(2n, 2m) is hyperbolic for a € (0, ag), Euclidean for
o = ap, and spherical for a € (ag, 7], [5,9,11,12]. Denote by D(X3™(«a))
the set of zeros of the discriminant of ¢3™ (z, ') over 2. Then ag will be
one of D(X2™(a)).

On the geometric component we can calculate the Chern-Simons invari-

ant of an orbifold X32™(22) mod £ if k is even or mod 5= if k is odd),

where k is a positive integer such that k-fold cyclic covering of X%,T(%”) is

hyperbolic:
es(X3r(2)) = (X3 (%)) (mod})
= I(X%;?(?T)) + 2 L” Bda (mody)
2

cs (L(4nm +1,2n(2m—1)+ 1))+

. J 2+ g L50) S0 S
&

N |

S
\
i
(V)
=
~
~_
QU
Q

(Sn(v) = Sp—1(v)) = M?(Sp—1(

<
=
|
n
7
[\
—~
<
=
=
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f (log< : M?(Sn (v1)—Sn_1(v1))—(Sn_l(vl)—Sn_z(v1))>)da

Sp(v1) = Sn—1(v1)) = M2(Sp-1(v1) — Sp—2(v1))

b ioe M2 (Sn(v2) = S (v2)) = (Sp-1(v2) = Sna(v2))\ 4,
*Wf ! (l g( <sn<v2>—sn_1<v2>>—MQ(Sn_va)—sn_Q(vg))))d’

@o

(mod if k is even or mod 57 if k is odd),

where the second equivalence comes from Theorem 4.1 and the third equi-
valence comes from the fact that

(X3 (7)) = Les(L(4nm + 1,2n(2m — 1) + 1)) (mod3),

from Theorem 3.2, and from geometric interpretations of hyperbolic and
spherical holonomy representations.

The following theorem gives the Chern-Simons invariant of the Lens
space L(4dnm +1,2n(2m — 1) + 1).

Theorem 5.1 (|7, Theorem 1.3]).

m—n

cs(L(4nm + 1,2n(2m — 1) + 1)) = T

(mod1).

6. CHERN-SIMONS INVARIANTS OF THE HYPERBOLIC C(2n,2m) KNOT
ORBIFOLDS AND OF ITS CYCLIC COVERINGS

Table 6.1 gives the approximate Chern-Simons invariant of C'(2n,2m) for
n between 1 and 4, m between 1 and 4 with n = m. Since C(2,2), C(4,4),
C(6,6), C(8,8) are amphicheiral knots, their Chern-Simons invariants are
zero as expected. We used Simpson’s rule for the approximation with 2x 104
(10% in Simpson’s rule) intervals from 0 to cg and 2 x 10* (10* in Simpson’s
rule) intervals from «g to m. Table 6.2 gives the approximate Chern-Simons
invariant of the hyperbolic orbifold, cs(X37(2%)) for n between 1 and 4, m
between 1 and 4 with n > m, and for k£ between 3 and 10, and of its cyclic
covering, cs (M k(X%fl”)) except amphicheiral knots. We used Simpson’s rule
for the approximation with 2 x 102 (102 in Simpson’s rule) intervals from
2m/k to ap and 2 x 102 (102 in Simpson’s rule) intervals from ag to .

We used Mathematica for the calculations. We record here that our data
in Table 6.1 and those obtained from SnapPy [1] match up up to existing
decimal points and our data in Table 6.2. For computational reasons, we
need ag being the bifurcation point of the geometric solution of the Riley-
Mednykh polynomial as described in Theorem 1.1.
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TABLE 6.1. Chern-Simons invariant of X2™ for n between
1 and 4, m between 1 and 4 with n > m except

amphicheiral knots:

o cs(X30)
2.094395102393195 0
2.574140778131840 | 0.34402298
2.750685152010280 | 0.27786688
2.843209532683532 | 0.24222232
2.847642272262783 0
2.942465754372979 | 0.42782933
2.990939179603150 | 0.38923730

()
S
()
3

CO CO O CO O =~ 00 O = N
CO O O = NN NN

3.007517657179940 0
3.040474611156828 | 0.46103929
3.065453796328835 0

TABLE 6.2. Chern-Simons invariant of the hyperbolic
orbifold, cs(X3™(2E)) (mod7 if k is even or mody; if k is
odd) for n between 1 and 4, m between 1 and 4 with
n = m, and for k between 3 and 10, and of its cyclic
covering, cs (Mk (XQQTT)) except amphicheiral knots:

k | es(XE(3D)) | es(My(XD)) k| es(X3(30)) | es(Mi(X3))
3 | 0.0875301 0.26259 3 | 0.0449535 0.13486

4 0.144925 0.579699 4 | 0.0876043 0.350417
o | 0.0784576 0.392288 5 | 0.0165337 0.0826684
6 | 0.0351571 0.210943 6 | 0.138167 0.829004
7 | 0.00506505 | 0.0354553 7 | 0.0120078 | 0.0840545
8 | 0.108039 0.864313 8 | 0.0430876 0.3447

9 | 0.0218112 0.196301 9 0.012125 0.109125
10 | 0.0530574 0.530574 10 | 0.0876213 0.876213
k | es(X3(3)) | es(Mi(X3)) k| es(Xg(30)) | es(Mi(X3))
3 | 0.0161266 0.0483799 3 0.125912 0.377736
4 | 0.0536832 0.214733 4 0.192764 0.771058
5 | 0.0817026 0.408513 5 | 0.0360431 0.180216
6 0.103012 0.618074 6 | 0.0996796 0.598077
7 | 0.0481239 0.336867 7 | 0.00284328 | 0.0199029
8 1 0.00768503 | 0.0614802 8 | 0.0554674 0.443739
9 0.032221 0.289989 9 | 0.0409685 0.368717
10 | 0.0521232 0.521232 10 | 0.0294401 0.294401
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k | es(XE(3E)) | es(Mi(X9)) k| es(XE8(3D)) | es(Mi(X9))
3 0.098074 0.294222 3 0.138854 0.416562
4 | 0.157843 0.631371 4 | 0.214725 0.858898
5 | 0.0993608 0.496804 5 | 0.0628859 0.31443
6 | 0.0622858 0.373715 6 | 0.128841 0.773046
7 | 0.0365103 0.255572 7 | 0.0332457 0.23272
8 | 0.0174882 0.139906 8 | 0.0866094 0.692875
9 | 0.00284881 | 0.0256393 9 | 0.0170324 0.153291
10 | 0.091224 0.91224 10 | 0.0613865 0.613865

Note that the Chern-Simons invariant of the hyperbolic orbifold
es(X37 ()

is only defined modulo % [7, Theorem 1.4] and we only get modulo ﬁ for
k odd |7, Theorem 1.4].
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