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We analyze theoretically the polarizability features in exciton’s regime for an open spherical quantum 

dot. Based on the polarizability features the method of self-consistent calculation of the dielectric constant 
for nanoparticles array is proposed. 
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1. INTRODUCTION 
 
Recent advances in lithography, colloidal chemistry, 

and epitaxial growth have made it possible to manufac-
ture artificial metamaterials and simple functionality 
devices for the optical and quantum information appli-
cations using the quantum dots (QD) [1-4]. In construct-
ing the theoretical model of these objects it is necessary 
to consider the broadening of the energy levels related 
with a finite lifetime of the electron simultaneously with 
the taking into account the size-quantized effects. 

In view of this reasons we present a simple model of 
an open spherical QD taking into account the size re-
duction of the static polarizability. Based on the polar-
izability features we propose a method of self-
consistent calculation of the dielectric constant for 
quantum dots array embedded in gelatinous matrix. 

 
2. MODEL 

 
Examination of the properties of an open spherical 

QD begins with the solution of the Schrödinger equa-

tion within the effective mass approach, in which the 
boundary presents by the -potential [5]: 

 

 0U r r r , (2.1) 
 

where 0r  is the radius of QD and  is the coefficient of 
penetrability.  

The standard boundary conditions at 0r  and as-
ymptotic behavior of the Bessel and Neumann func-
tions lead to following expression for the radial part of 
the wave function in spherical coordinates: 
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The continuity conditions of the wave functions, the 

discontinuity of the first derivatives at the boundary of 
QD and the normalization condition give the transcen-
dental equation: 
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Here, l  – orbital quantum number, 1m  and 2m  are the 
effective masses of the electron (or hole) in the QD and 
in the environment. Solution of equation (2.3) describes 
the quasi-stationary electron (hole) states. 

Coulomb interaction between the electron and hole 
can be calculated as the matrix element 
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where  is the material’s dielectric constant, nl er  
and n l hr  are the wave functions of the electron and 
hole respectively. As a result, the energy spectrum of 
exciton with the band gap for bulk materials gE  has 
the form 

 

 e hex
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Using the results presented above the optical prop-
erties of the structures under consideration can be in-
vestigated. In the case of the dipole transition in direct-
gap semiconductor the static polarizability of the 
ground state of the particle in QD is given by 
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Here, 1 2 1 2/m m m m  is the reduced mass of exci-
ton, 0 0n n  and 0nF  is the oscillator strength 
determined by the dipole matrix element: 
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Calculations were performed for the colloidal QDs of 

CdS in gelatin [6] with following physical parameters: 
a band gap 2.42gE CdS  eV of the bulk materials, 
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the effective masses are 0/ 0.205em m , 0/ 0.7hm m  
( 0m  – mass of the free electron), and high-frequency 
dielectric constant 5.5b . In the case of gelatin the 
parameters are following: 1em  and 2.2m  [7]. 

 
3. RESULTS AND DISCUSSION 

 
The performance calculations show the interesting 

feature of the polarizability. Namely, the dimensionless 
polarizability (i.e., the polarizability (2.6) normalized to 
the third order of the linear size, namely 3

0 0/ r ) 
linearly decreases with the decreasing of the QD’s ra-
dius (Fig. 1). Such a dependence correlates with the 
known experimental data [8].  

 

 
 

Fig. 1 – The dimensionless polarizability 0  versus radius 0r  
for ground state in open spherical QD (CdS) of single-particle 
electron (blue dots) (a), the exciton with 5.5  (red circle) (b) 

 
The obtained dependence is the result of size-

quantized effect. Moreover, such a behavior of the po-
larizability will influence on the dielectric constant of 
the array of QDs. 

Taking into account this effect and relationship for 
the effective dielectric constant 

 

 0

0

1 2
1m , (3.1) 

 
(  is the volume fraction of QDs) we developed a self-
consistent method for calculation of the dielectric con-
stant by the flow diagram in Fig. 2. 

The initial step of iteration is the bulk dielectric 
constant b . The iterative calculations were terminated 
when the variation of the dielectric constant remained 
to 10-4. So, for the radius in range 1 – 3 nm the dielec-
tric constant varies from 2.21 to 2.65, respectively. 

 

 
 

Fig. 2 – Flow diagram of the self-consistent calculation of the 
dielectric constant 

 

 
 

Fig. 3 – The energy of optical transition 1s-1s E1 versus d for 
CdS nanoparticles in water derived from the experimental 
data and semiempirical models [9] 

 
Let us note that the presented self-consistent calcu-

lation procedure allows to get the dielectric constant of 
an array of QDs, even when the initial step has no ex-
act definition.  

As an example, the energy of optical transition was 
calculated as a function of QD’s size (Fig. 3, red dots). 
Deviation  of  the  calculated  E1  from  the  data  of  [9]  is  
related with the different values of dielectric constant 
in water and gelatin. 

 
4. CONCLUDING REMARKS 

 
In this paper we have proposed a simple model of 

an open spherical quantum dot in exciton regime. Un-
der this model we have shown that the dimensionless 
polarizability is proportional to the forth order of QD’s 
radius, in contrast to the expected result, namely, that 
the polarizability of arbitrary quantum system is pro-
portional to the third order of the linear size. Such a 
feature of the polarizability follows from the size-
quantized effect. 

Based on the obtained dependence, we have real-
ized the method of self-consistent calculation of the 
dielectric constant. On the example of a CdS QDs array 
embedded in a gelatinous matrix the significant differ-
ence between the dielectric constant for nanoparticles 
and the bulk semiconductor material is demonstrated. 

 
REFERENCES 
 

1. N.N. Ledentsov, J. Lightwave Tech. 26, 1540 (2008). 
2. N.M. Litchinitser, V.M. Shalaev, J.  Opt.  Soc.  Am.  B 26 

No12, B161 (2009). 
3. D. Alexander, J. Bruce III, C. Zuhlke, B. Koch, Opt. Lett. 31 

No13, 1957 (2006). 
4. N.I. Zheludev, Science 328, 582 (2010).  
5. N.V. Korolev, S.E. Starodubtcev, Cond. Matt. Int. 13 No1, 

67 (2011). 

6. O.V. Ovchinnikov, M.S. Smirnov, B.I Shapira, Theor. Ex-
perm. Chem. 48 No1, 43 (2012). 

7. S.I. Alekseev, M.C. Ziskin, Bioelectromagnetics 28 No5, 
331 (2007). 

8. R. Schäfer, S. Schlecht, J. Woenckhaus, J.A. Becker, Phys. 
Rev. Lett. 76 No3, 471 (1996). 

9. O.E. Rayevska, G.Ya. Grozyuk, V.M. Dzhagan, J. Chem. 
Phys. C 114 No51, 22478 (2010). 

 

http://publish.aps.org/search/field/author/Schlecht_S
http://publish.aps.org/search/field/author/Woenckhaus_J
http://publish.aps.org/search/field/author/Becker_J_A

