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Indium- vanadium doped with different molar percent (0.05-1%) was prepared by photochemical reduc-

tion method on pure TiO2 nanoparticles synthesized by sol –gel and hydrothermal process. XRD, FT-IR, 

TEM, SEM and EDX analysis were done for characterized nanoparticles and methyl orange (MO) was used 

as an environmental pollutant to verify photocatalytic effect of synthesized particles under visible and UV 

lamps. Result of tests was showed that In-V doping restrain from crystal growth, that only hydrothermal 

TiO2 particles with binary doped 0.2% molar of In-V can improve photocatalytic activity compared to sol-

gel nanoparticles. Pure TiO2 prepared by hydrothermal and sol-gel processes were calcined at 

300,400,450,550 ºC for 3h and 500º C for 2h, respectively. 
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1. INTRODUCTION 
 

Among photocatalytic nanoparticles, Titania is one 

of the best materials as photocatalyst for electrical and 

optical properties, low cost, high photocatalytic activity, 

chemical stability, non toxic and without chemical and 

corrosion abrasion against light [1-2]. These particles 

have rutile (B.G.  3.0 eV), anatase (B.G.  3.2 eV) and 

Brookite phases. Anatase crystals were used in solar 

cell, optical sensitive paints and optical catalyst [3]. 

Recombination of hole and electron is one of the im-

portant electronic properties in these nanoparticles]. 

The recombination could occur as thermally assisted 

detrapping or electron tunneling [4]. This process 

caused to decrease photo efficiency. A reducer (electron 

donor) or oxidant (electron acceptor) agents can pre-

vention of their recombination to increase photocatalyt-

ic activity. Different methods are available for increas-

ing area to volume ratio of TiO2 particles to improve 

photocatalytic effect such as: noble metal doping [5], 

metal ion doping [6], anion doping [7] and dye sensiti-

zation [8]. Among them, doping method applied to im-

prove the trapping efficiency of change carriers [9]. 

Zhang et al [10] prepared V-Sc codoped TiO2 by sol-gel 

method, S-N codoped TiO2 was synthesized in many 

paper [11], Zhu et al [12] reported that P/N codoped 

caused to increase rutile to anatase transfer, Yang et al 

[13] prepared C/V-TiO2 codoped by sol-gel method and 

Chen et al [14] prepared V-TiO2 nanoparticles by sol-

gel method. 

In this paper, we used a photochemical reduction 

method for preparing In-V codoped TiO2 nanoparticles 

to quantify photocatalyst activity and methyl orange 

was used as an organic compound for doing photodeg-

radation tests. 

 

2. EXPERIMENTAL 
 

2.1 Material and methods 
 

Different materials were used for preparing men-

tioned nanoparticles. TTIP [Ti [OCH(CH3)4] (Merck, > 

98%), Glacial Acetic Acid (Merck, >99.8%), Ammonium 

metavanadate (NH4VO3, Merck), Indium chloride 

(InCl3, Merck) and dionized water was produced by a 

Smart-2-Pure type made in TKA company of Germany. 

Pure TiO2 nanoparticles were prepared by sol-gel 

and hydrothermal methods according to [15] papers, 

respectively. Including the hydrothermal particles cal-

cined in 300, 400, 450, and 550º C for checking intensi-

ty of Brookite phase and photocatalytic activity. 

 

2.2 Preparation of In-V nanoparticles 
 

For preparing In-V particles, first different molar 

percent (0.1, 0.2, 0.4, 0.6, 1.0%) of ammonium meta-

vanadate as vanadium source with regard to molar 

percent of V to Ti, was added to certain amount of pure 

TiO2 particles that synthesized by sol-gel and hydro-

thermal processes. Then 100 ml of solution was placed 

under condition N2 atmosphere for 10 min and put it 

with aluminum paper. After this, it was placed against 

ultraviolet light with stirring for 15 h in photochemical 

box equipped with fan to prevent UV leakage, then 

indium chloride as indium source with the same molar 

percent (0.1, 0.2, 0.4, 0.6, 1.0%) was added to men-

tioned solution and repeat above stages. At the end, the 

mixture was centrifuged and dried in 100º C for 12 h. 

 

2.3 Characterization 
 

The X-ray diffraction (XRD) spectra in 0.006-5 nm 

wavelength of various titania samples were recorded on 

a Philip X Pert Pro MPD model using Cu Kα radiation 

as the X-ray source. The pattern was used for checking 

nanoparticles size and phase analysis. Average particle 

size was showed by Debye-Scherrer equation. By scan-

ning electron microscope (SEM) (Hitachi, S-4160) is 

obtained 3 dimension pictures from sample structure. 

FT-IR spectra were recorded on Nicolet Magna IR 550 

spectrometer. It was used for checking surface struc-

ture of nanoparticles and get to information about sur-

round organic layers of metal nanoparticles. Transmis-

sion electron microscope (TEM) (Philips, CN 10, HT 
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100 KeV) was applied for testing the particle morphol-

ogy. Photodegradation of MO was tested by using UV-

Vis spectrophotometer (Perkin Elmer Lambda 2S) 

against UV and visible light. 

 

2.4 Photocatalytic effect 
 

Mo solution was used as an environmental pollu-

tant to evaluate photodegradation activity of synthe-

sized nanoparticles. All of decolorization of dye solution 

tests were done in quart glass when samples were ex-

posed to UV and Vis lamps as artificial sunlight. For 

tests, the mixture containing 100 mg catalyst nanopar-

ticles and 100 ml MO solution [40, 41] was aerated for 

30min to get on adsorption equilibrium and saturated 

solution with O2. Then it was placed in photochemical 

box equipped with a fan with stirring in 40 and 25 cm 

distance from UV and Vis lamps, respectively. At cer-

tain times UV-Vis spectrometer was showed absorption 

changes [37, 42]. PH for MO solution was adjusted be-

tween 2-3 and maximum wavelength is 510 nm [43]. 

 

3. RESULT AND DISCUSSION 
 

3.1 X-ray scattering analysis 
 

Figure 1 is a plot of X-ray scattering (XRD) of pure 

hydrothermal TiO2 particle in different calcinations 

temperatures. (101), (004), (200), (105), (211), (204), 

(116) diffraction peaks were proved anatase phase for 

pure TiO2. A main peak for anatase phase around 2θ= 

25.2º (101) has tetragonal form. Another peak around 

2θ= 30.8º (121) exhibit brookite phase in this particles. 

When calcinations temperature was increased, we 

could decrease intensity and sharpness of the brookite 

peak in nanoparticles. Also any rutile diffraction peak 

wasn't in these spectra.  
 

 
 

Fig. 1 – X-ray spectra (XRD) of pure hydrothermal TiO2 

particles in a)300, b)400, c)450 and d)550º C calcinations 

temperatures 
 

Figure 2 shows the XRD plan of In-V photochemical 

doped hydrothermal TiO2 samples. By using Debye-

Scherrer equation on anatase (2θ= 25.2, 48.2, 55.2º) we 

have been calculated the average particle size for pure 

hydrothermal titania in 300, 400, 450 and 550º C, size 

of particles are about 8.26, 11.85, 18.75 and 25.2 nm, 

respectively. Size of 0.2% In-V photochemical codoped 

on hydrothermal titania is 14.3 nm. 
 

 
 

Fig. 2 – XRD plan of a) pure b) 0.1% c) 0.2% d)1% In-V 

photochemical codoped TiO2 nanoparticles 

 

3.2 SEM and TEM images 
 

Figure 3 shows SEM and TEM images for 0.2% In-V 

photochemical doped on hydrothermal TiO2 particles 

with different enlarge. These images exhibited spheri-

cal structure and adhesion of the particles. EDX meas-

urement also was proved the presence of In and V in 

this sample. With this images particle size was esti-

mated about 11-13 nm and Debye-Scherrer was calcu-

lated particle size about 12-15 nm, that TEM micro-

graphs has proved this calculation synthesized nano-

particles have spherical morphology. 
 

 
 

Fig. 3 – SEM and TEM images for 0.2% In-V photochemical 

doped on hydrothermal TiO2 nanoparticles 
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3.3 Photodegradation effect 
 

Result show In-V binary doped on hydrothermal 

TiO2 compared to sol-gel TiO2 had the best operation in 

competition between interfacial change transfer ratios 

to rate of hole-electron recombination. Figure 4 exhibit 

in both UV and Vis region, 0.2% In-V codoped on hy-

drothermal TiO2 could reduce the recombination rate 

as electron trapper. Login Indium to V-TiO2 structure 

prevent from particle growth and In3+ change to In2+ as 

electron trapper and form lower energy level from con-

duction band (CB). In absent the light source, again 

In2+ ions change to In3+ and atmospheric O2 traps re-

leased electron as electron acceptor and produce O2
-. 

 

 
 

Fig. 4 – Photodegradation activity for In-V photochemical codoped on hydrothermal TiO2 nanoparticles Under a) UV, b) visible lamps 

 

4. CONCLUSION 
 

The metal ion dopants influence the photo efficiency 

of TiO2 by acting as electron or hole trap center within 

band gap of TiO2 and alter the e-/h+ pair recombination 

rate through following process. In this paper, different 

molar percent of In-V codoped on hydrothermal and 

sol-gel pure TiO2 by UV photochemical reduction pro-

cess that In3+, V3+ deposited on TiO2 surface as In0, 

V0 and photodegradation activity of the MO can im-

prove when 0.2% In-V codoped on hydrothermal TiO2 

and reduce recombination rate as electron trapper. In 

photochemical doped method, metal ions were into 

holes in TiO2 structure with zero oxidation number, but 

in other doping methods, cation and anion were substi-

tuted at Ti4+ and O2
- sites, respectively. 
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