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The paper presents the results of the authors many year work in the field of ion&plasma sources de-

velopment. The families of DC and RF ion and plasma sources are described. The results of ion&plasma 

sources utilization in materials surface modification technologies are discussed. 

 

Keywords: Ion Source, Plasma Source, Surface Modification, Plasma, Ion Beam. 
 

 PACS number: 52.50.Dg. 

 

 

1. INTRODUCTION 
 

During last decades the trend became evident to 

utilize ion beam and plasma technologies in industrial 

applications [1]. The reason consists in wide possibili-

ties and ecological compatibility of the ion beam and 

plasma processes. A lot of plasma sources models are 

known nowadays [1-13]. However the development of 

science and industrial technologies requires more flexi-

ble, more energy efficient, more perfect plasma sources.  

The paper presents the results of the authors many 

year work in the field of ion&plasma sources develop-

ment as well as the results of their utilization in mate-

rials surface modification technologies. 

 

2. THE FAMILY OF DC IS 
 

The distinguishing feature of the DC IS family (30, 

50 and 100 mm in diameter) is the use of the glow dis-

charge for electrons generation in the water cooled hol-

low cathode (cold cathode). The absence of filament or 

“hot-hollow” cathode provides long life time of the IS 

even in case of reactive gases utilization.  

 

2.1 The Construction of DC IS 
 

The scheme of the DC IS is shown on Fig. 1.  
 

 
 

Fig. 1 – Construction of the cold cathode ion source. 1, 2 –

cathode and anode chambers; 3 – gas distributor, 4 -magnetic 

system; 5 - ion optic system; 6 – cone orifice 
 

Cold cathode ion source (see Fig. 1) consists of cy-

lindrical water cooled cathode 1, cylindrical anode 2, 

gas distributor 3, magnetic system 4 providing magnet-

ic field in the cathode and anode chambers and ion ex-

traction system (IOS) 5. Between cathode and anode 

chambers a cone orifice 6 is executed. It connects cath-

ode and anode blocks.  

2.2 Characterization of DC IS 
 

Experiments showed that plasma potential meas-

ured in the anode chamber was close to the anode one, 

electron energy distribution was highly enriched by the 

group of fast electrons. It should be also noted that spa-

tial distribution of electrons is defined mainly by mag-

netic field configuration and doesn't depend on diame-

ter of the orifice connecting cathodic and anode cham-

bers if its diameter doesn't exceed 5mm. 

Fig. 2 shows the extracted argon ion beam current ib 

versus the discharge current id. One can see that ion 

beam current is proportional to the discharge one in the 

wide range of id.  
 

 
 

Fig. 2 – The extracted argon ion beam current versus the dis-

charge current. Argon flow rate is equal to 2.5 cm3/min. Ion 

source diameter is 50 mm 
 

DC IS (30, 50 and 100 mm in diameter) provide ion 

beam current density ranging from 0.5 to 4.5 mA/cm2, 

ion energy can be varied within 200-1500 eV. 

Fig. 3 represents radial dependence of the ion beam 

current density. The curve was obtained with flat elec-

trodes of the IOS. The utilization of the profiled elec-

trodes of the IOS leads to more homogeneous ib(r) dis-

tribution however the ion beam current density be-

comes lower.  

 

3. DC RADICAL SOURCE  
 

DC radical source (RS) is the modified DS IS. The 

construction of DC RS differs from the DC IS one by 

the absence of IOS. It is changed by the grounded per-

forated electrode. The presence of fast electrons in the 

discharge leads to the high dissociation rate of the 

working molecular gas and gives the opportunity to 

obtain a flow of plasma enriched by the products of 
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molecules dissociation at the exit of DS RS. The de-

pendence of nitrogen and oxygen dissociation degree on 

discharge current is shown on Fig. 4. 
 

 
 

Fig.3. Radial dependence of the ion beam current density near 

the exit of the 50mm in Diameter DC IS. 
 

 
 

Fig. 4 – Dissociation rate versus discharge current. 

 

4. RF GRIDDED ION SOURCE FAMILY 
 

Since the last decade of the XX the systematic re-

search of RF power absorption mechanism was con-

ducted by the authors of the present paper [13]. The 

main attention was concentrated on revealing the con-

ditions of efficient RF power input to plasma and high 

plasma density generation. It was shown that at pres-

sure less than 10 mTorr the most efficient RF power 

absorption can be achieved under conditions of reso-

nant helicons and oblique Langmuir waves excitation. 

That is the reason why inductive RF discharge located 

in an external magnetic field of certain vale, became a 

basic working process of the original family of RF grid-

ded IS. 
 

4.1 The construction of RF gridded IS 
 

RF IS source consists of the dielectric gas-discharge 

chamber (GRC), magnetic and ion-optical systems. The 

magnetic system is based on electromagnets. The ion-

optical system consists of three punched electrodes.  

Cylindrical RF IS with diameter 100 and 200мм as 

well as linear RF IS with the IOS size 20  15cm are 

developed.  

For ignitions and maintenance of the discharge the 

cooled spiral antenna located on a lateral or face exter-

nal surface of GRC are used. The ends of the antenna 

are connected to the RF power supply through the 

matching system. 

 

 

 

4.2 Characterization of RF gridded IS 
 

Fig. 5 shows the dependences of ion beam current 

on the RF generator power. One can see that sources 

are efficient when using both inert, and chemically ac-

tive gases.  
 

 
 

Fig. 5 – Ion beam current versus RF generator power.  
 

Spatial distribution of ion beam current density is of 

great interest for industrial applications. One of the 

most important factors influencing a profile of an ion 

current density is the value of an external magnetic 

field (see Fig.6). Fig.7 represents radial distribution of 

an ion beam current density measured at different dis-

tances from the RF IS IOS. The magnetic field value 

corresponds to the best conditions of RF power absop-

tion by plasma. 
 

 
 

Fig. 6 – Radial dependencies of the normalized ion beam cur-

rent density measured near IOS. 
 

 
 

Fig. 7 – Radial dependencies of the ion beam current density 

measured at the different distances from IOS.  
 

The ion beam energy can be changed from 50 to 

1500 eV. Thus the IS provides possibilities for "soft" (at 

energy of ions about 50 eV), and "rigid" (at energy of 

ions of an order 1000 eV), impacts on samples. However 

the ion beam current density in the case of 50 eV ion 

energy is low. 
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5. RF GRIDLESS ION SOURCE 
 

In order to provide soft treatment of samples by of 

relatively high current ion beam the RF gridless IS was 

developed. The working process of the IS is also based on 

the inductive RF discharge located in the external mag-

netic field which value corresponds to the resonant con-

ditions of helicons and oblique Langmuir waves excita-

tion. 

 

5.1 The construction of RF gridless IS 
 

The IS consists of cylindrical dielectric gas discharge  

chamber with diameter 5cm and length  15cm (see 

Fig. 8). The working gas is supplied to the upper end of  

the discharge  chamber while the other one ends with a 

Laval nozzle. The GDC is located in the external mag-

netic field provided by the electromagnet.  The spiral 

antenna is assembled on the lateral side of the IS. An-

tenna ends are connected to the RF power source 

through the matching system.   
 

 
 

Fig. 8 – The laboratory model of RF gridless IS 
 

5.2 Characterization of RF gridless IS 
 

The ion energy distribution functions were meas-

ured in dependence on gas flow rate, power input and 

magnetic field value. Measurements revealed the exist-

ence of two groups of ions, i.e. slow (with energy about 

30 eV) and fast ones (with energy 60-170 eV). The gas 

flow rate increase leads to the reduction of the high-

energy ions number and enhancement of the slow ones 

quantity. Typical ion beam energy distribution function 

obtained at Ar flow rate 6cm3/min is shown on Fig. 9.  
 

 
 

Fig. 9 –  Typical ion beam energy distribution 

6. THE PROLONGED PLASMA SOURCE WORK-

ING AT ATMOSPHERIC PRESSURE 

 

6.1 The construction of atmospheric plasma 

source 
 

The prolonged plasma source [14-16] (see Fig. 10) 

includes ignition and main electrodes, RF power input 

unit, gas distributor providing air or working gas flow. 

The discharge is ignited between the main electrode 

and the sample, placed on the grounded plane. The 

advantages of RF plasma source are the possibility of 

thick dielectric substrates processing and low ozone 

generation rate.  
 

 
 

Fig. 10 – The scheme of the prolonged plasma source.  

1 – ignition electrode, 2- grounded plate, 3 – main electrode,  

4 – RF power input unit, 5 – RF power supply, 6 – sample 

 

6.2 The properties of atmospheric plasma 

source 
 

Fig. 11 demonstrates the distribution of nitrogen 

molecule and molecular ion radiation intensity in the 

gap between the main electrode and the grounded 

plane. If discharge occupies the whole gap the  maxima 

of radiation intensity can be observed near the elec-

trodes. The appearance of the radiation maxima can be 

attributed to a formation of the spatial charge sheaths. 

A potential drop that accelerates ions towards elec-

trodes is known to appear along the sheath. The sheath 

presence near the place where the samples are located 

indicates a significant role of the accelerated ions in the 

change of properties of processed materials as in the 

case of low pressure plasma.  

Measurement of the radiation intensity in various 

points along the main electrode showed high uniformity 

of the discharge. 
 

 
 

Fig. 11 – Nitrogen molecule (open circles) and molecular ion 

(filled squares) radiation intensity distribution in an interval 

between the main electrode and the grounded plane 
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7. APPROBATION OF ION&PLASMA SOURCE IN 

SURFACE MODIFICATION TECHNOLOGIES 
 

The developed ion&plasma sources were approved 

in modern surface modification technologies. The re-

sults of PTFE surface modification are shown on 

Fig. 12. The irradiation of PTFE samples leads to sig-

nificant improvement of its adhesion. The presence of 

oxygen especially enriched by radicals during the irra-

diation of samples by argon is accompanied by further 

increase of the adhesive force. Irradiation of PTFE 

samples only by a flow of the oxygen enriched by radi-

cals, leads to some improvement of adhesion but the 

result is much worse than in case of ion irradiation.  

 
 

 
 

Fig. 12 – The PTFE adhesion force versus oxygen pressure. 

Dashed line  corresponds to adhesion force of the untreated 

PTFE. 1,2,3,4 correspond to the irradiation of PTFE only by Ar 

ions, by Ar ions in the presence of oxygen, by Ar ions in the 

presence of oxygen enriched by radicals, only by oxygen en-

riched by radicals 

 
 

Fig. 13 –  SEM pictures of PTFE surface: a) untreated PTFE, 

b) after ion beam irradiation, c) after treatment in atmospher-

ic discharge  

 

From all variety of the physical and chemical processes occur-

ring on a PTFE surface [17] we will allocate two: the change of 

chemical properties of materials surface and change of the 

morphology of a surface. Experiments showed (see Fig.13) that 

irradiation of PTFE by the ion beam results in essential 

change of morphology of a surface, while the presence of chem-

ically active particles, especially radicals, leads to the change 

of a chemical composition of a surface [18]. The treatment of 

PTFE by atmospheric discharge leads to smoothing and 

change in the chemical composition of its surface. 
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