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Langevin and Fokker Planck equations are considered for stochastic spherical motion of the ferromag-

netic fine particle with frozen magnetic moment in a viscous carrier. Special attention devotes to the corre-

spondence between dissipative and diffusive terms of these equations. For the case when the particle mo-

ment of inertia is negligible small, the effective system of Langevin equation for spherical coordinates is 

obtained. This system contains two equations with additive noises and can be readily treated numerically. 

We confirm our analytical finding by numerical simulation. 
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1. INTRODUCTION 
 

The problem of the dynamics of ferromagnetic na-

noparticles, dispersed in viscous carried, is important 

for both theoretical and applied reasons. From one 

hand, the ensemble of such particles is a remarkable 

example of a complex system, where a lot of dynamical 

and stochastic effects can take a place. From another 

hand, these ensembles are nothing other than ferroflu-

ids [1]. Therefore, dynamic of particles determines 

response of ferrofluid on an external action, and, hence, 

ferrofluid properties. 

The motions of a nanoparticle can be represented 

as superposition of two types of motion: 1) displace-

ment of a particle center of mass, 2) rotation of a par-

ticle about fixed center of mass, or spherical motion. 

Since the average size of nanoparticles in real fer-

rofluid usually is ~10 nm [2], the spherical motion is 

stochastic at room temperature and, also called 

Brownian rotation.  

Two approaches to description of stochastic dy-

namics exist: Langevin equation (LE) and Fokker-

Plank equation (FPE) [3]. The first one is the base of 

numerical analysis, while second is used for analytical 

evaluation of statistical properties. Despite the differ-

ence in methodology, the correspondence between LE 

and FPE is present. There are a lot of investigations 

where LE was examined for the problem of stochastic 

rotation of fine particles in fluid [4-7]. However, FPE 

was written only in the case of validity of Boltzmann 

distribution [4]. The last is not applicable when the 

time-dependent external field is applied to the fer-

rofluid.  

The correct FPE let to verify the results of numeri-

cal simulation, based on LE, and gives the possibility 

to obtain some statistical characteristics in simplest 

cases. But also, using FP one can develop new simula-

tion techniques, which more powerful and suitable for 

description the collective effects in a large nanoparti-

cle ensembles [8]. That is why in our analysis we de-

vote a special attention to the full accordance with LE 

and FPE without any additional suppositions. 

2. MODEL AND MAIN EQUATIONS 
 

2.1 System of equations with inertia term 
 

We study rotational motion of spherical ferromagnetic 

nanoparticle of radius R, whose magnetic moment  is 

locked to the crystal axis, or, so-called particle with frozen 

magnetic moment. The corresponding system of LEs is 

represented by the angular momentum equation and on 

the equations of spherical motion [9, 7]  
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where  is the angular velocity, m  /M is the reduced 

magnetic moment, M is the particle material magnetiza-

tion, h  H(t)/M is the reduced external field (H(t) is the 

external field), 0  (I/0M
 2V)

1/2
, r  I/6V are the char-

acteristic time, I  2/5DVR2 is the particle moment of 

inertia, D is the particle density, V  3/4R3 is the parti-

cle volume,  is the liquid viscosity, 0  410 – 7 Hm is 

the magnetic constant, (t) is the random torque, which 

represent the interaction with a heat bath. We assume 

that random torque (t) is approximated by a Gaussian 

white noise of zero mean and delta correlation. 

In the case m  const and using spherical coordi-

nates system, equations (2.1) can be rewritten as 
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where  and  is the angular coordinates of the nano-

particle; x, y, z are the angular velocity projection on 

laboratory xyz coordinate system axis; hx, hy, hz are the 

external field projections on laboratory coordinate sys-

tem axis; x, y, z are same projection of the random 

torque. 

The corresponding to (2.1) FPE [3] one can be writ-

ten as 
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where P  P(t, , m) is the time-dependent probability 

density of m states, and  is the noise intensity. Ex-

pression (2.3) can be presented in the scalar form 
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which will be corresponding in statistical sense to the 

equation (2.3). When external field is constant, the 

stationary probability density Pst should be defined by 

Boltzmann distribution. This fact let us to obtain the 

explicit forms of Pst and    
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 B6 Vk T  , (2.6) 

 

Where kB is the Boltzmann constant, T is the thermo-

dynamic temperature. The validity of (2.5) was ap-

proved by numerical simulation using the direct solu-

tion of system (2.2), where the noise intensity was de-

fined by relationship (2.6). 

 

2.2 Reduced system of equations 
 

The direct numerical solution of system (2.2) is con-

sumes considerable computing resources, because of 

presence of five equations, including stochastic ones. It 

is a main restriction for using (2.2) for simulation en-

sembles with large number of nanoparticles. 

The typical average size of fine particle in a ferrofluid 

is ~ 10 nm [10]. That is why the particle moment of iner-

tia I is too small, and one can neglect the inertia terms 

in (2.1) and (2.2). Therefore, we can rewrite equation 

(2.1) in the following form: 
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In turn, vector equation (2.7), when the magnetic 

moment is constant by magnitude, is reduced to the 

system of two equations for spherical angles 
 

 

 

 

 

2
0

2
0

2
0

1

1

sin cos sin sin cos cot

cos sin ,
sin

cos sin
sin

cos sin cot .

x y z

z y x

r

r r

r

r

y x

x y z
r

d
h h h

dt

h
I

d
h h

dt

I I


     



   



 



 



 






  



   




  




  




  


(2.8) 

 

The corresponding to LE (2.8) FPE [3] have the 

form 
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where P  P(t, , ) is the time-dependent probability 

density of the magnetic moment states, parameter  is 

defined by noise intensity. In the way, described below 

and using the Boltzmann distribution, we derived it as 
 

 6 BV k T  . (2.10) 

 

The expression (2.8) contais only two equatios in-

stead of five in (2.3). However, the integration of (2.8) is 

obstructed. By physical reasons, we need to use here 

the white noise in Stratonovich interpretation. At the 

same time, the widely used numerical methods [11] are 

developed for LE with noises in Ito interpretation. This 

problem is not actual, when noises are additive, and 

one can used all these method regardless of the inter-

pretation of the noise. But, in our case, expressions in 

(2.8) contain multiplicative noises. 

To overcome this problem, the following effective LE  
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was introduced. Here 1,2 are the gaussian white 
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noise with unit intensity. The last system contains 

additive noises and corresponding in statistical sense to 

the FPE in the form (2.9). It let to use the system (2.11) 

instead of (2.8) in numerical simulation. 

To examine the developed approach we considered 

joined action of the circularly polarized and the static 

fields 
 

 
cosΩ sinΩx y zzh e h t e h t e h  

, (2.12) 
 

where h and  are the rotating field amplitude and 

frequency respectively, hz is the static field value. We 

calculated the average projection of the nanoparticles 

magnetization the on z axis (see Fig. 1). The results 

obtained in the case hz  0 fit to the well-known Lange-

vin function: mz  coth – 1/,   0M
 2Vhz/kBT. 

 

 
 
Fig. 1 – The magnetization curves for the field (2.12) obtained 

numerically. M  3,1∙105 A/m, R  10 nm ,T  298 K  

 

3. CONCLUSIONS 
 

The consistent approach for description of Brownian 

rotational motion of the ferromagnetic fine particle in a 

viscous liquid was proposed. This approach based on 

the strong correspondence between dissipative and 

diffusive terms in Langevin and Fokker Planck equa-

tions. Two cases were considered 1) equations of mo-

tions contain the inertia terms, 2) the inertia terms 

were neglected because of the nanoparticle small size. 

Using the system of equations of motion without in-

ertia terms let to achieve of significant saving of the 

computing power during simulation of the large ferroflu-

id volumes. But such system, written in the spherical 

coordinates contained the multiplicative noises that 

complicate the numerical solution. Thereby, the effective 

system of Langevin equations was obtained. Such sys-

tem correspond to the same Fokker-Planck equation, 

that the original system of motion. At the same time, 

effective system contain only additive noises and suita-

ble enough for conventional numerical techniques.  

Using the derived Langevin equations, the numeri-

cal simulation was performed. The results obtained 

were in a good agreement with analytical predictions, 

which were performed using Fokker-Planck equation in 

the case of absence of time-dependent external fields.  
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