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ABSTRACT

Context. The problem of a neural network model synthesis for industrial processes with the definition of an optimal topology
characterized by a high level of logical transparency and acceptable accuracy is considered. The object of research is the process of
neural network modeling of industrial processes using an indicator system to simplify and select the topology of neuromodels..

Objective of the work is consists in synthesis a neural network model of industrial processes with a high level of logical trans-
parency and acceptable accuracy based on the use of the system.

Method. A method is proposed to use artificial neural networks of feedforward propagation for modeling industrial processes.
After evaluating the overall level of complexity of the modeling problem based on the indicator system, it was decided to build a
neuromodel based on historical data. Using the characteristics of the input data of the problem, the most optimal structure of the neu-
ral network was calculated for further modeling of the system. A high level of logical transparency of neuromodels significantly ex-
pands their practical use and reduces the resource intensity of industrial processes.

Results. Neuromodels of industrial processes are obtained based on historical data. The use of an indicator system made it possi-
ble to significantly increase the level of logical transparency of models, while maintaining a high level of accuracy. Constructed neu-
romodels reduce the resource intensity of industrial processes by increasing the level of preliminary modeling.

Conclusions. The conducted experiments confirmed the operability of the proposed mathematical software and allow us to rec-
ommend it for use in practice in modeling industrial processes. Prospects for further research may lie in the neuroevolutionary syn-
thesis of more complex topologies of artificial neural networks for performing multi-criteria optimization.

KEYWORDS: modeling, industrial processes, indicator system, neuromodel, sampling, training, error.

ABBREVIATIONS N, is a multiple neurons at the network output;
ANN is an artificial neural net; N. i .
. . L o. 1s aneuron at the network output;
OS is organized simplicity. p
N}, is a multiple neurons of the hidden network layer;
NOMENCLATURE
CAWP is complexity is associated with people;

Infsample is a general information of input data (data

Ny, is a hidden network layer neuron;
NUMglemtype 1 @ number of element types in the neu-

ral network;

set); ;
NN is a neural network;

Kinput 1s a number of element types in the neural net-
work: NNgiruct is a structure of neural network;

Keorry 1s a number of independent variables that OC is organized complexity;

. o | is a number of neurons at the network input;
strongly correlate with the original features;

. - . Lev, is a measurement accuracy level;
Kimp is a number of the most significant independent accmeas M ’

. Levy 1is a level of significant and less significant
variables among factors4

Khntcorrx 1S @ number of independent variables that

are weakly dependent on others or do not correlate with
each other4

N is a number of input features that characterize sam-
ple instances;

N; is a multiple neurons at the network input;

Nj, is a neuron at the network input;
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and/or non-significant factors4
LeVianag 18 a level of possible control and manage-

ment;
Leviask is a conditional difficulty level of the task;

LeVgmpitetn 18 @ level of possible simplification of the

structure;
m is a number of dependent (categorical) features of

sample instances;
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p is a number of neurons at the network output;

Param; is additional and specificity parameters of

task;
g is a number of connections between neurons in the

network;
I is number of neurons in the hidden network layer;
RC is random complexity;
Sample is a data set;

Task is general represent of the modeling task;
W is a multiple of connections between neurons;
Wy is a connection between neurons in the network;

Xn is a independent attribute of the sample instance;
X is a set of independent attribute (variables);
Ym 1is a value of the dependent variable (attribute) of

the sample instance;
Y is a set of values of dependent variables.

INTRODUCTION

Today, much attention in production is paid to im-
proving equipment, but in fact, the autonomous perform-
ance of equipment and its perfection do not take into ac-
count the size of batches, the time spent on transferring
parts between machines [1—4]. The most significant costs
in the technological chain fall on production. Static mod-
eling does not provide a complete answer to many ques-
tions the way out of this situation is to switch to complex
(simulation modeling) production processes and create a
model [1, 2].

Such a model can be investigated over time for both a
single test and a given set. Usually, simulation models are
built to find the optimal solution in conditions of resource
constraints, when other mathematical models are too com-
plex. Production system modeling is used when conduct-
ing experiments with a real system is impossible or im-
practical [3]. Simulation modeling of production proc-
esses connects all areas of product production: production
process development, production process modeling and
technological preparation of production, as well as pro-
duction management. Based on the results of such model-
ing, the parameters of movement of workpieces and parts
should be regulated [1-3]. The results of simulation mod-
eling are not calculated using formulas, as is the case
when using analytical models, but are a product of statis-
tical processing of data observed and recorded during the
processing of the modeling program. The simulation
model, as an object of measurement, unlike real systems,
is a fully accessible system.

The object of modeling can be industrial, logistics,
transport, and other systems. Modeling of production sys-
tems allows to [1-4]:

— identify and fix problems in advance that will mani-
fest themselves on Ethan commissioning and would re-
quire financial and time costs;

—reduce investment in production with the same pro-
ductivity parameters;
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— optimize production and choose the most rational
solution from a variety of options.

These advantages indicate the importance of using
modeling in production and industrial processes, because
it can significantly reduce costs. However, when model-
ing complex, nonlinear processes, systems, and objects,
the question always arises as to what is best to use as the
basis for the model [1]. ANN whose parametric synthesis
is based on historical data about processes, objects, or
systems can produce hidden knowledge from the data [4].
This makes it possible to account for implicit relation-
ships. The logical structure of such neuromodels usually
remains hidden from the user. The problem of manifesta-
tion (contrast) of this hidden logical structure is solved by
reducing neural networks to a special logically transparent
sparse form.

That is why the applied problem of constructing mod-
els of real industrial processes based on ANN, which
would be characterized by a high level of logical trans-
parency and acceptable accuracy of operation, is relevant.

The object of study is the process of constructing
neuromodels of industrial processes with a high level of
logical transparency and acceptable accuracy of opera-
tion.

Using a system of indicators, it is possible to deter-
mine the structural features of the Ann at the very begin-
ning, which will be used as the basis of the model.

The subject of the study is a neural network model of
industrial processes, which is characterized by a high
level of logical transparency and acceptable accuracy.

Using information about the modeling task and evalu-
ating the input data, it is necessary to build a neuromodel.

The purpose of the work is to construct and study
neuromodels of industrial processes with a preliminary
definition of structural features based on the use of a sys-
tem of indicators.

1 PROBLEM STATEMENT
Most of the tasks associated with the synthesis of
models based on data about industrial processes have a
different nature and a high level of specificity ( Paramy ).

However, when using the apparatus of neural networks, it
is sufficient to have a comprehensive assessment of the

complexity of the task: Task = {Paramr, LevTask}, Such a

comprehensive assessment can be obtained on the basis of
information about the input data of the task (a sample of
data) and a group of criteria for evaluating the accuracy of
the data and the requirements for the model:

Levy,y = {Inf Lev Levi,,Lev LeVianag }

It was noted in [5] that a simple neuromodel based on
a perceptron will be sufficient for tasks belonging to the
OS category. Then such a model ( NN ) will consist of: a

sample > smplfctm > accmeas®

set of neurons N = {Ni, Ng., Nh} consisting of subsets of
Ni={Nil,N- Nil},|=l,2,...,|Ni

iy oo

No = {No, Noy - No,  P=12,...

input

, output

N0|, and hidden neu-
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rons Np = {thth,...,Nhr},r :1,2,...,|Nh|. The number
of neurons in the hidden layer ( Ny = {Nhl’NhZ""’Nhr },

r=12,.., |Nh|) can be calculated based on analytical es-

timates of the input data. The input data of the problem is
represented by an information Sample = (X,Y), where

X ={X1,X2,...Xn} is the set of independent variables:

features, Y = {yl, y2,...ym} is the set of values of depend-

ent variables, N and M are the numbers of input features
that characterize the sample instances.

After that, it can proceed to determining the weights
of connections between neurons W = {Wq }, in other words,

to parametric synthesis. Having determined the values of
the elements of sets, we can consider the synthesis of
ANN: complete.

Therefore, the first subtask will be to determine the
exact category of complexity of the problem based on the
values of the criteria
LeVTask = {I nfsamples Levsmplfctm> Lev fetro LevaccmeaSv I-evmanag }

and data about the data sample. The next subtask will be
the calculation of the number of neurons in the hidden
layer of the network

|Nh| = Kinput - Keorry — Kimp — Khtcorrx [5].

2 REVIEW OF THE LITERATURE

Technological processes of industrial production, es-
pecially the processes of cutting structural materials, are
very complex in their physical and chemical nature [6-8].
Until now, there are no analytical models accepted by
everyone that accurately describe the patterns of tool wear
and load processes, thermal processes in the cutting zone,
etc. Therefore, in mechanical engineering technology,
models that previously designated as empirical are very
often used [6, 7]. Empirical models of objects and proc-
esses are the result of processing experimental data on the
behavior of an object or process using mathematical sta-
tistical analysis methods. Very often, the mathematical
apparatus of regression and correlation analysis is used to
build models of objects based on the results of experimen-
tal studies [7].

They studied the interdependencies of height and mass
of people of different ages and were faced with the need
to introduce such indicators of this dependence that would
reflect the relationship between the studied characteristics
of a person, but would not define each other Strictly un-
ambiguously. Currently, regression and correlation are the
main concepts of statistics [7].

The main task of correlation analysis is to identify the
significance of the relationship between the values of var-
ious random variables. The relationship between quanti-
ties (including random variables) in which one value of
one quantity (argument) corresponds to one or more well-
defined values of another quantity is called, respectively,
an unambiguous or multi-valued functional dependence.
The relationship between quantities, in which each value
of one quantity corresponds with the corresponding prob-

ability to a set of possible values of another, is called
probabilistic (stochastic, statistical). Examples of correla-
tion are the relationships between the strength and fluidity
limits of steel of a certain brand, between size errors and
shape errors of the part surface, between the test tempera-
ture and the strength of the material, etc. [6-8].

The mathematical apparatus of regression analysis al-
low to:

—evaluate unknown parameters of the regression
model proposed for the study;

—check the statistical significance of model parame-
ters;

— check the adequacy of the model;

— evaluate the accuracy of the model.

The type of regression model is proposed by the re-
searcher himself, and he proceeds from the following:

—the physical essence of the object or phenomenon
under study;

— the nature of the experimental material;

— analysis of a priori information.

The easiest object for model is an object that has one
input and one output factor. The input factor characterizes
the impact on the object under study. In technological
processes of mechanical engineering, this can be tempera-
ture, force, time, geometric parameters of the tool, charac-
teristics of the processed and tool materials, etc. The out-
put factor characterizes the reaction (response) of the ob-
ject to the influence of the input factor. Initial factors in
technological processes of mechanical engineering — the
length of the path traveled by the tool, the amount of
wear, stress, the quality of the treated surface, etc.

Usually, building models and studying an object be-
gins with the simplest models: linear ones [9-12]. The
linear model corresponds to a regression curve in the form
of a simple line. If we have an unlimited number of ex-
perimental points, then the linear regression model has the
form [9]:

N
y =Y wixj, s=1,2,.., S,

j=1

M

where y* is the value of the initial feature for the s-th

instance (observation) of the sample, is the weight Wj of

j-th attribute, X? is the value of the j-th attribute for the

s-th instance of the sample, N is the number of features
that characterize the sample instances, S is the sample
size.

In more complex cases, multidimensional linear re-
gression, in addition to first-order variables, can also in-
clude variables reduced to different powers, as well as
their combinations in the form of products and quotients
of different orders [10—12]. In this case, each such combi-
nation or variable of some order is considered as an addi-
tional dummy variable of the first order. And regression,
which essentially combines nonlinear functions, reduces
to a linear weighted sum of First-Order variables. In this
paper, we will use the least squares method to determine
the coefficients w = {w;} for [9-12]:
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— first-order linear regression models:
N

y =W+ D WiXj; (2)
j=1
— second-order linear regression models:
N N
2
Y =Wo + D WiXj+ D Wing )X s 3)

j=1 j=1
— second-order linear regression models with a first-

order fraction:
N

_ IR IR RIRIE RN C)
Y=Wot WX+ 3 D | W j o |+ L WNOSN -1+ )]
j=1 j=1p=j+1 p) j=l
— linear regression polynomial models with a reduced
number of features:
N
Yo=Y wixi ey, (5)
j=1

Currently, a large number of methods for constructing
mathematical models of various objects are described. At
the same time, among them, methods for constructing
mathematical models of technological processes should
be distinguished. When compiling mathematical models
of technological processes, they rarely have the necessary
complete a priori information about the technological
object and its environment [13, 14]. Even if there are
known systems of equations describing the behavior of
the system, it often turns out that there is no data on the
value of individual parameters, and besides, often the
existing models are too complex and the adaptation of
such models becomes quite time-consuming and lengthy.
In the future, it turns out that the model adopted during
the design process only roughly reflects the object, which
causes an error when managing using such a model.
Building a meaningful analytical model of a complex
object is problematic, and sometimes impossible, because.
the order of the dynamical system and the presence of
various nonlinearities are unknown. Therefore, it is desir-
able to build models of other classes.

An alternative modeling method is ANN [13, 14].
ANN is a mathematical analog of biological neurons in
the brain. ANN can be considered as a directed graph
with weighted connections, in which artificial neurons are
nodes. These models differ in the structure of individual
neurons, in the topology of connections between them,
and in learning algorithms. The ANN of direct distribu-
tion has an architecture consisting of layers (Fig. 1): in
such models, the input features of the recognized instance
are fed to the network inputs and then propagated from
the input layer (X;...Xy) to the original (y;...ym) [13, 14].

Each neuron on the hidden and output layers receives
signals from the outputs of neurons in the previous layer
at the inputs. The input vector of each neuron is converted
to a scalar using a weight (discriminant) function, after
which the value of the output signal is calculated using
the activation function. The output values of the last layer
are the result of the neural network.
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Figure 1 — Multilayer perceptron

The output values of each neuron are determined by
the formula:
Num prev
sz,n 'Valoutprev) >
n=1
where wy(x) is the activation function, W the weighting

(6)

Om=v(Wpo+

factors, Valgytprey 1s the output values of the neurons of
the previous layer, Num e, is the number of neurons of

the previous layer, m=1.2,..., M, M — the number of neu-
rons in the current layer [15].

3 MATERIALS AND METHODS
As it was given in the previous section, the modeling
task can be unified for a specific task after a certain com-
prehensive assessment of its complexity. Given that the
structure of ANN (NN = (struct, param)) allows to most
subtly encode the relationships between the input data
(X = {Xl,xz,...xn}), it is necessary to accurately select

the synthesis option for such a non-network model. Based
on the values of the indicators to assess the complexity of
the task

(Levrask = {Infsample’ I-eVsmprctma LeVietr, LeVacemeas
LeVimanag } )» it can be chosen a way to synthesize the

most acceptable structure [5].

Thus, the use of recurrent neural networks can lead to
a problem of retraining, when the model will show good
results with a high level of accuracy on the training data,
but the accuracy will immediately decrease on the test
data, in other words, the model will work only on the
training sample.

In the case when the model was synthesized for a
large-scale sample (n > 200 ) of data, at the same time,
the data was updated (new data about the object or system

under study was obtained: Sample‘ :<X|,Y‘>) or the

existing data was corrected, a strategy for structural opti-
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mization of the previously synthesized ANN may be use-
ful. With this approach, it will be important to evaluate
the possibility of simplifying the model structure. Struc-
tural optimization will consist in a point-by-point change
of the neuromodel: updating the activation function, re-
moving or adding an interneuronal connection
(struct'={N",c’}, N'={N,N',,N'.}, c={}). By
eliminating the connections responsible for noisy data, it
is possible to significantly increase the accuracy of the
resulting model. In contrast to the complete re-execution
of the synthesis, this approach will differ significantly in a
lower level of resource consumption [5].

In the case when a problem with input data

Sample:<X,Y> that is questionable can be modeled

(there is a question about the accuracy of the data, their
excess or a high degree of interconnectedness), it is nec-
essary to resort to input data preprocessing. Thus, the se-
lection of informative features will allow us to exclude

uninformative features Sample' =<X|,Y>, which will

subsequently increase the level of logical transparency of
the neuromodel. By spending more time on data preproc-
essing, it is possible to significantly reduce the time re-
sources at the stage of model synthesis based on ANN.
When modeling complex processes, objects and sys-
tems, data about which are recorded by sensor systems
with high frequency and represent Big Data (n>1000
and real-time pre-processing is impossible). A high-
precision neuromodel may be required. In this case, neu-

roevolutionary approaches can be used for the synthesis
of such a model, which are more capable of guaranteeing
an accurate architectural architecture of ANNs with a high
level of accuracy [5].

However, most industrial construction processes are not
characterized by excessive data or their constantly updated
nature. Therefore, such processes belong to the OS cate-
gory. The measurements of most of these processes are
either automated, since they are made on the basis of the
readings of special sensors, or they are protected from inac-
curacies, since they are made using special equipment. This
way, always LeViccmeas<0. Also, most industrial con-

struction processes are associated with fully controlled sys-
tems and objects (in most cases, the management is auto-
mated). Therefore, in this case, t0o, always LeVpanag =0

The criteria characterizing the possibility of simplifying the
structure and the number of significant factors also differ in
small values, since they are not focused on operational
processes, where there are difficult-to-fix features

(LeVgmpifetn =15 Lev e =—1) [5].

The general scheme of chosen the category of com-
plicity using indicators prepared as a formula (7).

Therefore, we can conclude that it has a level of com-
plexity of the OS category, which makes it possible to
further use indicators to determine the structural features
of the model (Fig. 2).

LeVsmplfetn < 0, LeV ey <0, LeVacemeas = 0, LeVmanag =0 —> OS

Levrask =

I-eVsmprctn >0,Leveey <0,Levaeemeas =0, I-evmanag =0->0C
LeVempifetn < O[] LeVsmpitetn = 0, LeV ety > 0, LeVaeemeas > 0, LeVpanag = 0 — CAWP

(N

LeVsmpifetn > 0, L&V fcyr > 0, LeVacemeas = 0, L8Vimanag = 0 — RC

| nfSe\mple<<
LeVsmprctnSO
LerctrSO
LeVaccmeas=0
LeVianag=0

| transparent structure of the :
\ “—____neuromodel _ __ _

The number of neurons in the hidden
layer can be calculated based on

analytical estimates of the input data

Figure 2 — Organized simplicity category of modeling task
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In our case, NuMgjempype =3 by default, because it is

assumed that only input, hidden and output neurons are
used. Next, it is need to determine the number of inde-
pendent variables that strongly correlate with the original
features Kgorpy . Additionally, the number of independent
variables that are weakly dependent on others or do not
correlate with each other is determined Ky corrx - Addi-
tionally, information about the number of the most sig-
nificant independent variables among the factors is pulled
up from the previous stage . After that, the number of

neurons in the hidden layer can be determined by the for-
mula [5]:

|Nh| = Kinput - KcorrY - Kimp - Kntcoer =3. ®

Also in the same way, ANN will be synthesized with
3 neurons in the hidden layer.

4 EXPERIMENTS

We have a sample of data describing samples of high-
chromium cast iron with different content of additional
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impurities. An example of data sampling is shown in Ta-
ble 1.

High-chromium cast irons with a chromium content of
10...35% are used for the manufacture of parts of mecha-
nisms operating under conditions of intense abrasive wear
[16]. These parts must have significant hardness. Improv-
ing the design of parts of various mechanisms (ground,
slurry and sand pumps, hammer crushers, ball mills, flota-
tion machines) requires their mechanical processing by
cutting. This leads to conflicting requirements for materi-
als, namely: maximum hardness is required to ensure
wear resistance, and minimum hardness is required for
cutting processing.

The solution to this problem is that the material must
have satisfactory machinability by cutting in the casting
state (low hardness) [17], and after mechanical processing
by cutting, heat treatment must be performed [18], which
will ensure a sufficient level of hardness and, accordingly,
wear resistance.

Samples of high-chromium cast iron containing:
1.09...3.54% C, 11.26...29.68% Cr, 0.77...5.71% Mn,
0.13...2.86% Ni, 0.99...1.46% Si were manufactured. For
these samples, cutter wear (I.,) was determined during
mechanical cutting. Minimal cutter wear of 0.45 mi-
crons/m was observed when cutting sample 1 with a min-

imum carbon content of 1.09% and the amount of car-
bides (K): 9.2%. The hardness of cast iron (HRC) and
microhardness of the components of the base structure
(HV50y5q) and carbides (HV50,,) were determined in
the casting state and after heat treatment of annealing at
690°C and 730°C for 9 hours and normalization from
1050°C with an exposure time of 4.5 hours.

It is necessary to establish the following functions:
cutter wear (I, amount of carbides (K), hardness
(HRC), microhardness of the base (HV50,,4) and car-
bides (HV50,,,) in the casting state and after heat treat-
ment (annealing, normalization) from the arguments: con-
tent in Cast Iron C, Cr, mn, Ni, Si.

The sample consists of input and output features:

— X, is content in the alloy with, %;

— X, is content of Cr in the alloy, %;

— X3 is Mn content in the alloy, %;

— X4 18 Ni alloy content, %;

— Xs 1s Si content in the alloy, %;

-V, is cutter wear (I.y);

— Y, is amount of carbides (K);

— Vs is hardness (HRC);

— Y, is microhardness of the base (HV50p,scq);

— Vs is microhardness of carbides (HV50,,,).

Table 1 — General information about data set

Xy X2 X3 X8 Yi Y2 Ys - y7
1.09 17.33 1.99 1.37 0.45 9.2 34.1 433
1.52 18.73 1.49 1.33 091 13.4 35.7 415
2.55 11.91 3.8 1.26 9.12 18.7 389 330
2.24 22.82 1.21 1.29 2.96 19.4 49.1 529
3.01 29.68 0.72 1.09 39.63 32.1 57.7 1402

Table 2 — Linear regression models
Dependent Total quadratic
variable\ Model type error Average ‘Yreal_)’calcl
First-order linear model (2) 57.9872 4.6689
Second-order linear model (3) 58.0843 1.6301
Yi Second-order linear model with first-order fractions (4) 1.8432 0.1972
Linear regression polynomial model with a reduced number of 1.8432 0.1942
features (5)
First-order linear model (2) 52.0201 1.2409
Second-order linear model (3) 28.7258 1.0976
Y2 Second-order linear model with first-order fractions (4) 8.2949 0.2554
Linear regression polynomial model with a reduced number of 8.2949 02223
features (5)
First-order linear model (2) 16.1631 2.7727
Second-order linear model (3) 10.1685 2.0367
Y3 Second-order linear model with first-order fractions (4) 6.3619 0.4485
Linear regression polynomial model with a reduced number of 6.3619 04148
features (5)
First-order linear model (2) 27.3060 3.5000
Second-order linear model (3) 19.8430 3.1000
Ya Second-order linear model with first-order fractions (4) 5.3524 0.6004
Linear regression polynomial model with a reduced number of 53504 04224
features (5)
First-order linear model (2) 2.6163 1.1000
Second-order linear model (3) 7.2305 3.1000
Ys Second-order linear model with first-order fractions (4) 9.6063 0.1108
Linear regression polynomial model with a reduced number of 96063 0.1255
features (5)
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Table 3 — Results for ANN-based models

Target Number of hid- Training
. . Average error
variable den neurons Time, s
Yi 3 3 0.061046
Yo 3 2 0.093592
Vs 3 4 0.040249
2 3 2 0.011954
Ys 3 2 0.096513

Table 4 — Model results based on test data

. . Second-order Second-order linear mod- Llnea? regression 'poly—

Target First-order linear . . nomial model with a

. linear model el with first-order frac- ANN
variable model (2) . reduced number of fea-

3) tions (4)
tures (5)

Vi 5.1 1.8 0.2 0.3 0.1

Y> 1.7 1.5 0.4 0.3 0.12

Vs 3.0 2.6 0.6 0.5 0.08

Ya 4.2 3.8 0.8 0.6 0.05

Ys 1.42 3.58 0.3 0.4 0.13

5 RESULTS the complexity of the task and the system of indicators, it

Table 2 shows the results for linear regression models.
During compression special attention was concentrated on
total quadratic error and average real and calculated re-
sults of depended feature.

Table 3 shows the results for ANN-based models.
During compression special attention was concentrated on
number of hidden neurons (what was calculated based on
system of indicators), training time (calculated on sec-
onds), average error of model.

Table 4 shows the results of models based on test data.
During compression special attention was concentrated on
average error of models for different depended features.

6 DISCUSSION

Based on the results of the initial analysis, the task
was assigned to the OS group. After all, the input sample
was not excessive, and the risks of human influence were
excluded. The only significant complicating factor is the
poorly conditioned correlation matrices.

Further calculations showed that the use of 3 neurons
in the hidden layer is sufficient to build a neuromodel
with acceptable accuracy of operation.

Analyzing the initial results, we should note a fairly
large run-up among the model training time: from 4 sec-
onds (the largest indicator among ANN-based models) to
34.37 for linear regression models.

The results obtained on the data after reduction
showed that the accuracy increased when constructing a
neuromodel with a certain structure based on the indicator
system, and the time significantly decreased.

Additionally, we should note the high level of logical
transparency of the obtained Ann-based models.

CONCLUSIONS

The urgent scientific and applied problem of con-
structing a neural network model of industrial processes
with a high level of logical transparency and acceptable
accuracy based on the use of a system of criteria for de-
termining the structure is solved.

The scientific novelty lies in the study of the use of a
system of criteria for determining the structural features
of a neural network model. Based on the assessment of

© Leoshchenko S., Oliinyk A., Subbotin S., Netrebko V., Gofman Ye., 2021
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was possible to obtain logically transparent neuromodels
with a high level of accuracy of work.

The practical significance lies in the fact that the de-
veloped neural network models can be used during the
implementation of real technical processes in production
facilities. Their use will significantly reduce production
costs and automate the modeling process.

Prospects for further research and development ar-
eas include the development of neuromodel synthesis
methods based on the combined use of complex Ann to-
pologies and swarm optimization methods.
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AHOTAIIA

AKTyanbHicTh. Po3risiHyTO 3aa4y noOyI0BH HelpoMepekeBOT MO/ MPOMHUCIOBHX IPOIECIB i3 BU3HAYCHHSIM ONTHMAJIBHOL
TOIOJIOTI], IO BiZPi3HAETHCSI BUCOKMM PIBHEM JIOTiYHOI MPO30POCTi Ta MPUAHATHOIO TOYHICTIO. OO0’€KTOM NOCIIHKEHHS € Tpolec
HEHPOMEPEKEBOr0 MOJICTIOBAHHS NPOMHCIIOBUX IIPOLECIB i3 3aCTOCYBAHHAM IHJMKATOPHOI CHCTEMHU [UIs CIPOIICHHA Ta BHOOPY
TOTIOJIOTiT HEHPOMOIETi.

Meta po6oTH moJsrae y No0yaoBi HepoMepeKeBoi MOAETI MPOMHCIOBUX HPOLECIB 3 BUCOKUM PiBHEM JIOTIYHOI IPO30POCTi Ta
MPUHHATHOIO TOYHICTIO HA OCHOBI BUKOPHCTAHHI CHCTEMHU.

Mertoa. 3anpornoHOBaHO BHKOPHUCTOBYBATH LITYYHI HEHPOHHI MEpexki MPSAMOro MOIMIMPEHHS JUls MOJCTIOBAHHS IPOMHUCIOBUX
npouecis. ITicist OIiHKM 3aranbHOTO PiBHS CKJIAJHOCTI 337adi MOJEIIOBAaHHS HA OCHOBI IHAMKATOPHOI CHCTEMH OyJI0 NPHHHSTO pi-
HIeHHs OylyBaTH HEHpPOMOZENIb Ha OCHOBI iICTOPHYHUX AaHUX. BUKOPHCTOBYIOUM XapaKTEPUCTHKU BXITHUX JAaHMX 3a1adi Oyio po3-
paxoBaHO HAHOLIBII ONTHMANbHY CTPYKTYPY HEHPOHHOI MepeKi AJIsl TOJANIBIIOr0 MOJCIIOBAHHS CUCTeMU. BHCOKHI piBeHb JIOTiY-
HOT [IPO30POCTi HEHpOMOeIeii, 3HauHO PO3IIKPIOE TX NPAKTUYHE BUKOPHCTAHHS Ta 3HWKYE PECYPCOEMHICTh HPOMHUCIOBUX IMPOILIe-
ciB.

PesyabTaTn. OTpuMano HEHpOMOIeli IPOMHUCIIOBHX MPOIIECIB HA OCHOBI ICTOPHYHMX JaHUX. BUKOpHCTaHHS 1HANKATOPHOI CHC-
TEMH J03BOJIWIO B 3HAUHIHM Mipi 30UIBIINTH PiBEHB JIOTIYHOI IPO30POCTI MOAENeH, 30epiraroun BUCOKHH piBeHb TodHOCTI. [100ymo-
BaHi HEHPOMOJIEN 3HIKYIOTh PECYPCOEMHICT IIPOMUCIIOBHUX ITPOLECIB 32 PaXyHOK 301IBIIEHHS PiBHS IOIEPEAHHOTO MOICIIOBAHHS.

BucnoBkn. [IpoBesieHi eKCIIEpUMEHTH MiATBEPAWIM MPale3JaTHICTh 3alPOIIOHOBAHOTO0 MAaTEMaTHYHOTO 3a0e3NeYeHHs 1 J03BO-
JISIFOTh PEKOMEH/TyBaTH HOTO JUIsl BAKOPUCTAHHS Ha MPAKTHIL IIPH MOJAEGITIOBaHHI IIPOMUCIIOBUX IporieciB. [lepcriekTnBH moaanbmmx
JOCII/KEHb MOXKYTh MOJISITATH HEWPOEBOJIOLIITHOMY CHHTE31 OLIBII CKJIAJHUX TOMOJIOTIH IUTYYHHX HEHPOHHHMX MEPEX Ui BUKO-
HaHHs 0araTOKpUTEpiaabHOI ONTUMI3ALL].

KJIFOYOBI CJIOBA: moznentoBaHHS, IPOMHUCIIOBI MPOIECH, CHCTEMa 1HAUKATOPIiB, HEHPOMOAEb, BUOIpKa, HABYAHHS, TIOMIJI-
Ka.
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AHHOTAIUSA

AKTyalbHOCTB. PaccMoTpeHa 3a1a4a IOCTpOEHHs HEHPOCEeTeBOI MOJENU INPOMBIIIICHHBIX IIPOLIECCOB C ONpPEICICHUEM ONTU-
MaJIbHOW TOIOJIOTHH, KOTOpasi OTIMYAETCs] BHICOKMM YPOBHEM JIOTMYECKOI NPO3pavyHOCTH M MpUEMIIEMOi TOYHOCThI0. OOBEKTOM
HCCIIEIOBAHUS SABJISIETCS IIpoLiecC HEHPOCETEBOro MOJCIUPOBAHNS IPOMBIIIICHHBIX CTPOUTENIBHBIX NPOLIECCOB C IPUMEHCHUEM UH-
JIUKATOPHOI CUCTEMBI ISl yNIPOIIEHHS BEIOOPA TOMONOTHH HEHpoMoaene.

Henr padoThI 3aKTIOYaeTCs B MOCTPOCHHM HEWPOCETEBOM MOJENH NMPOMBIIIIEHHBIX CTPOUTEIBHBIX IMPOLECCOB C BBICOKHUM
YPOBHEM JIOTHYECKOH PO3PAYHOCTH M IPHEMIIEMOI TOYHOCTHIO HA OCHOBE HCIIOIb30BAHNH CHCTEMBI.

Metona. IIpennoxeHo MCIONB30BaTh MCKYCCTBEHHBIE HEHPOHHBIE CETH IPSMOTO PAcIpOCTPAHCHUS AJSI MOJCITHPOBAHUS IIPO-
MBIIIUIEHHBIX IIporieccoB. [loce omeHKH 0o0Iero YpoBHS CIOKHOCTH 3aJady MOJCIMPOBAHUS HA OCHOBE MHANKATOPHOWU CHCTEMBI
OBbUIO NPUHATO pEUIeHHe CTPOUTH HEHPOMO/ENh Ha OCHOBE HCTOPHUUECKUX JaHHBIX. VICTIONB3ys XapaKTepPUCTUKHM BXOJHBIX JAHHBIX
3amayn OblIa paccudTaHa HanboJiee ONTHMANIbHAS CTPYKTypa HEHPOHHOW CeTH IS JajbHEHIIEro MOJIEITMPOBAHNUs CUCTEMBL. Bbico-
KUH ypOBEHb JIOTMYECKOH MPO3pauyHOCTH HeHpoMmojenel, 3HaUUTEIbHO PACIIUpPAET UX MNPAKTUYECKOE HCIIONb30BaHHE M CHHUXKAET
PECYPCOEMKOCTD MPOMBIIIIEHHBIX ITPOLIECCOB.

PesyabTartel. [lonydeHnsl HEHpOMOENN IPOMBILUIEHHBIX NIPOLIECCOB HA OCHOBE HCTOPUUYECKUX JAaHHBIX. Mcronp30BaHME MHAU-
KaTOPHOI CHCTEMBI O3BOIMIIO B 3HAUUTEIFHON CTEHEHH YBEIWINTh yPOBEHB JIOTHIECKOI MPO3PavHOCTH MOJETEH, COXPAHSSI BBICO-
KN ypoBeHb TOYHOCTH. IIocTpoeHsI HelpoMopenel CHIKAIOT PECYpPCOEMKOCTh MPOMBIIUICHHBIX MPOIECCOB 32 CUET yBEINYCHUS
YPOBHS IIPEIbIIYHIEIO MOAEIUPOBAHUSL.

BriBoasl. [IpoBesieHHBIE SKCIEPUMEHTHI HOATBEPIIIH pabOTOCIIOCOOHOCTD IPEUIOKEHHOTO MATEMAaTHYECKOT0 00ecieeH s 1
MO3BOJIIOT PEKOMEHA0BATh €ro Ul UCIIOJIb30BAHUS Ha IPAKTUKE NPU MOJAEIUPOBAHUY IPOMBIIIICHHBIX IpoLeccoB. IlepcreKkTiBbI
JaJbHEHIINX MCCIIeIOBAaHUI MOTYT 3aKIII0YaThCsl B HEHPOIBOIIOIMOHHOM CHHTE3¢ 00Jiee CI0KHBIX TOIOJIOTHH UCKYCCTBEHHBIX HEMH-
POHHBIX CETEH IS BBIMOTHEHHUS MHOTOKPUTEPHATbHON ONTHUMH3AIHN.

KJ/IFOYEBBIE CJIOBA: MonenupoBaHue, IPOMBIIUICHHbBIE MIPOLECCH], CUCTEMa MHAWKATOPOB, HeiipoMoens, BEIOOpKa, 00y-
YeHHUE, OLIUOKA.
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