РАДІОФІЗИКА ГЕОКОСМОСУ

DOI: https://doi.org/10.15407/rpra24.01.55

УДК 550.388.2

PACS number: 94.20.Vv

Е. Д. AKCËHOBA¹, С. В. ПАНАСЕНКО²

¹ Радиоастрономический институт НАН Украины, ул. Мыстэцтв, 4, г. Харьков, 61002, Украина E-mail: katya.aksen93@gmail.com

² Институт ионосферы НАН и МОН Украины, ул. Кирпичова, 16, г. Харьков, 61002, Украина E-mail: sergii.v.panasenko@gmail.com

ПРОЯВЛЕНИЯ ВОЛНОВЫХ ПРОЦЕССОВ В ПАРАМЕТРАХ ИОНОСФЕРНОЙ ПЛАЗМЫ В ПЕРИОД ГЕОКОСМИЧЕСКОЙ БУРИ 1-3 СЕНТЯБРЯ 2016 г.

Предмет и цель работы: Анализ волновых процессов в период геокосмической бури в среднеширотной ионосфере; получение высотно-временных зависимостей относительных вариаций мощности принимаемого сигнала радара некогерентного рассеяния, температур электронов и ионов; расчет параметров перемещающихся ионосферных возмущений – относительных амплитуд, вертикальной и горизонтальной составляющих фазовой скорости (V_z и V_h) и длины волн (Λ_z и Λ_h).

Методы и методология: Для получения результатов использовался спектральный анализ с применением адаптивного преобразования Фурье. В дальнейшем данные подвергались полосовой фильтрации при помощи цифрового фильтра. Фазовые скорости возмущений определялись путем кросс-корреляционного анализа временных вариаций мощности сигнала. Результаты: Установлено, что наблюдавшаяся буря, в течение которой индекс геомагнитной активности достигал значения $K_p = 6$, способствовала усилению акустико-гравитационных волн и перемещающихся ионосферных возмущений. Спектральный анализ показал, что периоды преобладающих колебаний находились в диапазоне $60 \div 100$ мин,

а их длительность не превышала двух периодов. Относительные амплитуды мощности сигнала менялись в пределах 0.02 \div 0.2, а относительные амплитуды температур электронов и ионов – в пределах 0.03 \div 0.12. Продемонстрировано, что значения амплитуд квазигармонических вариаций мощности сигнала 1 и 2 сентября 2016 г. примерно в 2 раза превышали значения в соседние дни, когда K_p -индекс был более низким. Показано, что $V_z = 26 \div 50 \text{ м/c}$, $V_h = 210 \div 455 \text{ м/c}$ и $\Lambda_z = 120 \div 290 \text{ км}$, $\Lambda_h = 1075 \div 2450 \text{ км}$.

Заключение: Были обнаружены возмущения в ионосфере на высотах 150 ÷ 400 км, вертикальная групповая скорость которых была направлена вверх. Полученные в ходе обработки данных значения параметров возмущений указывают на то, что в дни наблюдений имели место крупномасштабные перемещающиеся ионосферные возмущения. Возможными источниками таких волн являются джоулев нагрев, действие силы Лоренца и высыпание энергичных частиц.

Ключевые слова: padap некогерентного pacceяния, вариации мощности и плазменных температур, геокосмическая буря, параметры перемещающихся ионосферных возмущений

1. Введение

Геокосмическая буря сопровождается сложными физико-химическими процессами, которые вызывают существенные вариации характеристик геомагнитного и электрического поля Земли, приводят к значительным магнитосферным и атмосферным возмущениям и оказывают негативное влияние на жизнедеятельность человека (нарушение систем телекоммуникаций, радионавигации и радиолокации, сбои в функционировании космических аппаратов и т. д.) (см., например, [1–3]). Важно, что такие вариации космической погоды, вызванные нестационарными процессами на Солнце и передачей энергии и импульса солнечного ветра геокосмической плазме, также проявляются в виде изменений ионосферных параметров от высоких до низких широт [3–5] и на высотах от нижней до верхней ионосферы [3, 6, 7]. Стимулированные бурей процессы в атмосфере часто носят квазипериодический характер и способствуют генерации акустико-гравитационных волн (АГВ).

Особый интерес представляют перемещающиеся ионосферные возмущения (ПИВ), которые являются следствием либо проникновения АГВ на ионосферные высоты, либо электромагнитного взаимодействия между Е и F областями ионосферы, особенно в ночное время. ПИВ играют важную роль в динамике ионосферы, осуществляя перенос импульса и энергии между различными ее областями. В соответствии с пространственно-временными масштабами эти возмущения делят на крупномасштабные и среднемасштабные. Горизонтальная длина волны крупномасштабных и среднемасштабных возмущений составляет соответственно 1000÷3000 и 300÷1000 км, период равен 0.5÷3 и 0.2÷1 ч, а горизонтальная фазовая скорость лежит в пределах 300÷1000 и 100÷300 м/с [8, 9]. Крупномасштабные ПИВ часто возникают в авроральной зоне во время магнитных возмущений и распространяются к экватору [10]. Среднемасштабные ПИВ обычно не имеют выделенного направления распространения и генерируются локальными источниками, расположенными в нижней атмосфере и связанными с такими процессами, как прохождение солнечного терминатора, метеорологические фронты, обтекание ветром неровностей рельефа и т. д.

Исследование ПИВ, сопровождавших геокосмические бури, проводится в течение нескольких десятилетий (см., например, [8, 9, 11]). Однако до настоящего времени существует не только большой разброс оцененных значений параметров ПИВ, обнаруживаемых в различных широтно-долготных секторах [10-13], но и в ряде случаев не удается найти корреляцию этих величин с уровнем магнитной активности [14, 15]. Это может быть вызвано несколькими причинами. Во-первых, крупномасштабные ПИВ постоянно распространяются из авроральной области, даже при магнитоспокойных условиях (индекс $K_n \leq 3$) [12], что затрудняет выделение возмущений, сгенерированных геокосмическими бурями. Во-вторых, частота регистрации ПИВ существенно зависит от применяемых средств и методов, а именно: от их чувствительности и способности измерять тот или иной параметр ионосферы. Например, в работе [14] показано, что ПИВ чаще проявляются в вариациях скорости движения плазмы, в то время как большинство методов основано на анализе концентрации электронов [10, 12, 13, 15].

Наконец, эффективность генерации АГВ и ПИВ во время геокосмических бурь зависит от большого числа факторов и определяется не только пространственно-временным распределением их источников, но и предшествующим состоянием атмосферы и ионосферы. Поэтому исследование волновых процессов в периоды геокосмических бурь различной интенсивности, накопление и анализ результатов, полученных разными методами, позволяет улучшить понимание источников их генерации, механизмов переноса энергии и импульса, а также повысить точность моделирования и прогнозирования ионосферных параметров в магнитовозмущенных условиях.

В настоящей работе представлены результаты анализа параметров ПИВ, полученных с помощью радара некогерентного рассеяния (НР) Института ионосферы НАН и МОН Украины (г. Харьков), в течение геокосмической бури 1–3 сентября 2016 г. Целью исследования было определение периодов и относительных амплитуд преобладающих волновых процессов, наблюдавшихся в диапазоне высот $100 \div 400$ км, в мощности НР сигнала *P*, температурах электронов T_e и ионов T_i , а также оценка фазовых скоростей и длин волн этих ПИВ.

2. Состояние космической погоды

Наблюдения проводились на фазе спада солнечной активности. Значения индекса солнечной активности *F*10.7 в дни наблюдений изменялись слабо, варьируясь от 95 до 99 с. е. п. При этом 31 августа 2016 г. были зарегистрированы три слабые рентгеновские вспышки (наибольший балл – C2.2) и имели место слабые оптические вспышки (https://www.spaceweatherlive.com).

Вариации ряда геомагнитных индексов приведены на рис. 1. Временные зависимости индексов геомагнитной активности AE и D_{st} получены из обсерватории Киото (http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html). В анализируемый период имела место умеренная (moderate, по классификации https://www.swpc.noaa.gov/noaa-scalesexplanation) или сильная (по классификации [3]) геокосмическая буря с максимальными значениями индексов AE = 1500 нТл, $D_{st} = -59$ нТл и $K_p = 6$. В первый день наблюдений индекс геомагнитной активности K_p не превышал значения 3, а $A_p \le 8$, что позволило рассматривать этот день как магнитоспокойный. Начиная с 1 сентяб-

Рис. 1. Временные вариации значений K_p -индекса, D_{st} -индекса (WDC-C2 for Geomagnetism, Kyoto University) и *AE*-индекса (WDC Kyoto) с 31 августа по 3 сентября 2016 г

ря 2016 г. значения K_p -индекса увеличивались до 4÷6, а значения индекса D_{st} уменьшались в интервале от -12 до -59 нТл. Максимальные значения *AE*-индекса в ряде случаев превышали 1500 нТл (см. рис. 1).

3. Средства и методы

Харьковский радар НР (географические координаты 49.6° с. ш., 36.3° в. д.) является единственным в среднеширотной Европе комплексом дистанционного радиозондирования, позволяющим одновременно исследовать большой набор ионосферных параметров: концентрацию электронов, температуры ионов и электронов, вертикальную скорость движения плазмы, ионный состав и др. Основные характеристики и режимы работы радара подробно описаны в работе [16]. В наблюдениях использовался следующий режим работы установки: зондирующий сигнал – двухчастотный составной радиоимпульс с длительностями и несущими частотами 663 и 135 мкс, f_0 и $f_0 + 0.1$ МГц $(f_0 = 158 \text{ M} \Gamma \mu)$ соответственно. Он обеспечивает разрешение около 20 км при определении высотного распределения мощности НР сигнала и 100 км при нахождении высотного распределения температур ионов и электронов [16]. Первичные массивы данных НР подвергались описанной в работе [17] обработке, которая включала удаление долгопериодных вариаций (тренда), применение спектрального анализа и полосовой фильтрации. Поскольку мы исследовали волновые процессы в диапазоне периодов 10÷120 мин, соответствующем периодам АГВ, некоторые этапы этой обработки были модифицированы с целью уменьшения искажений, вносимых процедурой фильтрации. В частности, тренд определялся на интервале 180 мин с шагом 1 мин путем аппроксимации исходных временных рядов полиномом 3-й степени по методу наименьших квадратов. Затем полученные после вычитания тренда и нормировки на него относительные изменения исследуемых параметров, δP , δT_i и δT_e , подвергались полосовой фильтрации в широком диапазоне периодов 5÷125 мин с использованием цифрового фильтра [18] и последующим сужением этого диапазона на основе результатов спектрального анализа - применения адаптивного преобразования Фурье (АПФ) [19]. Оценка вертикальной фазовой скорости ПИВ проводилась с использованием кросс-корреляционного анализа временных вариаций δ*P* на разных высотах.

Примеры результатов спектрального анализа данных на высотах 250 и 1300 км, а также их полосовой фильтрации для диапазонов высот $100 \div 400$ и $1100 \div 1400$ км представлены на рис. 2. При этом в первом из этих диапазонов анализировался только принимаемый НР сигнал $P = P_{sn} - P_n$, где P_{sn} – принимаемый сигнал, состоящий из смеси НР сигнала и шума P_n , а во втором диапазоне анализировался сигнал P_{sn} , который на высотах 1100÷1400 км идентичен

Рис. 2. Результаты обработки данных наблюдений 31 августа 2016 г.: a – результаты спектрального анализа, включающие временные относительные вариации мощности δP и шума δP_n , периодограммы δS_P и δS_{Pn} и энергограммы $E \land \Pi \Phi$ в относительных единицах; δ – результаты полосовой фильтрации δP и δP_n (сплошная линия на левой панели – прохождение вечернего терминатора на данной высоте)

шумовому сигналу P_n. Из рис. 2 видно, что на высоте 250 км имели место ярко выраженные возмущения с периодами $60 \div 80$ и $80 \div 120$ мин вблизи 08:00 и 15:00 мирового времени UT соответственно, тогда как на высоте 1300 км колебания с подобными периодами не наблюдались. Более того, значения спектральной плотности мощности шума δS_{Pn} оказались на порядок меньше значений спектральной плотности мощности НР сигнала δS_{P} . Существенное различие в поведении и спектрах δP и δP_n (см. рис. 2, *a*) указывает на отсутствие корреляции между НР сигналом и шумом. Об этом свидетельствуют также высотно-временные вариации их относительных изменений (см. рис. 2, б). На высотах 150÷300 км наблюдаются явно выраженные волновые структуры, а в вариациях шума на высотах 1100÷1400 км подобной картины не обнаружено. Необходимо отметить, что уже на этом рисунке визуально прослеживаются преобладающие ПИВ с кривизной линий постоянной фазы и относительными амплитудами, зависящими как от времени, так и от высоты.

4. Результаты наблюдений

Обнаружение и оценка параметров ПИВ производились только для дневного времени, когда отношение сигнал/шум q имеет приемлемые значения на высотах $100 \div 400$ км ($q = 1 \div 10$) и не приводит к существенным ошибкам при определении относительных вариаций параметров HP сигнала и ионосферы. Предварительные оценки

показали, что относительные погрешности δ оценивания δP , δT_i и δT_e обычно не превышают нескольких процентов. Поскольку концентрация электронов и вертикальная скорость дрейфа определяются с меньшей точностью ($\epsilon \approx 10 \div 30$ %), эти величины не были использованы для настоящего исследования. Кроме того, результаты представлены на временном интервале наблюдений 06:00–18:00 UT, чтобы не включать в рассмотрение эффекты солнечного терминатора.

4.1. Преобладающие периоды и время наблюдения ПИВ

Как упоминалось выше, относительные вариации параметров НР сигнала и ионосферы были подвергнуты АПФ с целью выявления преобладающих периодов колебаний и их локализации на временной оси. Результаты спектрального анализа для всех дней наблюдений представлены на рис. 3. Периодограммы и энергограммы часто демонстрируют близкую периодно-временную локализацию колебаний, имевших место в вариациях параметров НР сигнала и ионосферы в конкретный день, хотя наблюдается и ряд различий. В магнитоспокойный день 31 августа 2016 г. в вариациях δР наблюдались два ярко выраженных квазипериодических процесса с преобладающими периодами Т приблизительно 80 и 100 мин вблизи 06:00 и 15:00 UT соответственно. Эти же два колебания проявились и в плазменных температурах: первое вблизи 08:00 UT ($T \approx 0$ мин и $T \approx 60$ мин для δT_i и δT_e соответственно), а второе имело те же период и время существования, что и второй колебательный процесс в вариациях мощности НР сигнала. В течение 1 сентября 2016 г. в вариациях δP и δT_i также обнаружены два преобладающих колебательных процесса. Первый из них имел период $T \approx 80$ мин в вариациях мощности и $T \approx 90$ мин в вариациях температуры ионов и наблюдался в промежутке времени 08:00-10:00 UT

Рис. 3. Периодограммы и энергограммы относительных вариаций мощности НР сигнала (первый столбец), температуры ионов (второй столбец) и температуры электронов (третий столбец) на высоте 275 км 31 августа – 3 сентября 2016 г.

ISSN 1027-9636. Радіофізика і радіоастрономія. Т. 24, № 1, 2019

в обоих параметрах. Для второго колебания, которое присутствовало примерно с 12:00 до 15:00 UT и с 15:00 до 18:00 UT в вариациях δ*P* и δT_i соответственно, $T \approx 100$ мин. Интересно, что в этот день относительные вариации Т_а носили квазигармонический характер с *T* ≈ 100 мин в течение практически всего интервала наблюдения, однако их интенсивность была примерно в два раза меньше, чем интенсивность первого колебательного процесса в δT_i . Днем 2 сентября 2016 г. в вариациях δР обнаружены два широкополосных процесса (вблизи 07:00 UT – первый и вблизи 11:00 UT – второй), а также квазигармоническое колебание с $T \approx 70$ мин и временем существования с 16:00 до 18:00 UT. В вариациях плазменных температур преобладали два колебания, существовавшие с 07:00 до 10:00 UT (*T* ≈ 80 мин) и с 14:00 до 17:00 UT (*T* ≈ 90 мин) во временной зависимости δT_i , а также с 06:00 до 08:00 UT $(T \approx 60 \text{ мин})$ и с 13:00 до 17:00 UT $(T \approx 100 \text{ мин})$ в вариациях δ*T*_i. Наконец, 3 сентября 2016 г. в относительных вариациях мощности НР сигнала были четко выражены два колебательных процесса (вблизи 08:00 UT и 17:00 UT с периодами приблизительно 70 мин) и широкополосный процесс, имевший место вблизи 12:00 UT. В этот же день в вариациях δT_i и δT_e наблюдались два квазигармонических процесса с близкими характеристиками (периоды 70÷80 мин, время существования 15:00-18:00 UT). В целом, судя по периодограммам, интенсивность колебаний во всех проанализированных параметрах в период геокосмической бури обычно была выше, чем в магнитоспокойный день, кроме описанных выше вариаций δT_i 1 сентября 2016 г. (см рис. 3).

4.2. Параметры преобладающих ПИВ

Как показано на рис. 3, периоды преобладающих ПИВ обычно лежали в диапазоне 60÷120 мин. Именно этот диапазон был выбран для последующей полосовой фильтрации данных наблюдений. На рис. 4 представлены высотно-временные зависимости отфильтрованных вариаций мощности и плазменных температур. На этом рисунке четко видны волновые процессы, охватывающие высоты от 150 до 400 км и имеющие преобладающий период и временную локализацию, описанные в предыдущем пункте. 1 и 2 сентября имело место увеличение максимальных амплитуд волновых процессов в мощности НР сигнала примерно в 2 раза. Доступный диапазон высот для оценки вариаций в температурах ионов и электронов – 200÷400 км. Относительные амплитуды ПИВ в вариациях плазменных температур не проявляли ярко выраженной изменчивости ото дня ко дню и обычно лежали в пределах 0.03÷0.12. Наклон и кривизна линий равной фазы, которые лучше всего прослеживаются в вариациях δP из-за их лучшего высотного разрешения, указывают на то, что колебания возникали на бо́льших высотах, т. е. вертикальная фазовая скорость ПИВ V₂ была направлена вниз. Интересно, что в разные дни и для разных ПИВ амплитуды колебаний в вариациях мощности как превышали, так и были меньше амплитуд во временных зависимостях плазменных температур (см. рис. 4).

На рис. 5 приведены результаты кросс-корреляционного анализа относительных вариаций мощности HP, а также амплитуды этих колебаний. Эти результаты подтверждают тот факт, что фаза всех рассмотренных ПИВ распространялась сверху вниз в вертикальном направлении. Значения относительных амплитуд ПИВ в δP с ростом высоты сначала возрастали, достигали максимума на высотах $150 \div 300$ км, а затем уменьшались. Высотные вариации δP_{max} обычно составляли $0.02 \div 0.2$ (минимальные значения определяются погрешностью измерений).

По экспериментальным данным были определены диапазоны высот, на которых присутствовали ПИВ, уточнены периоды ПИВ, найдены высоты $h_{\rm max}$, на которых относительные амплитуды достигали максимальных значений (и сами эти значения), а также оценены вертикальные составляющие фазовой скорости V_z и длины волны Λ_z (табл. 1). В предположении, что обнаруженные ПИВ являются проявлениями АГВ, и с использованием упрощенного соотношения, которое применимо для длиннопериодных АГВ ($T \gg T_g$, где T_g – период Брента-Вяйсяля) вдали от области их отражения и диссипации [20, 21], $T/T_g \approx V_h/V_z \approx \Lambda_h/\Lambda_z$, были оценены также горизонтальные фазовая скорость V_h и длина волны Λ_h (см. табл. 1).

Как видно из табл. 1, величина δP_{max} 31 августа и 3 сентября имела значение 0.07, в то время как 1 и 2 сентября ее значения возросли до 0.14÷0.18 и 0.11 соответственно. Значения V_z

Рис. 4. Высотно-временные зависимости относительных вариаций мощности НР сигнала (левый столбец), температуры ионов (средний столбец) и температуры электронов (правый столбец) в диапазоне периодов 60÷120 мин 31 августа – 3 сентября 2016 г.

лежали в пределах $26 \div 50$ м/с, а значения $V_h - 210 \div 455$ м/с, Λ_z варьировалась в пределах от 120 до 290 км, а Λ_h – от 1075 до 2450 км.

5. Обсуждение

При оценке параметров ПИВ мы считали, что они вызваны распространением АГВ на ионосферные высоты. Такой вывод подкрепляется следующи-

ми фактами. Источники АГВ обычно располагаются в нижней атмосфере или нижней термосфере, т. е. их высота не превышает $120 \div 150$ км. Известно, что вертикальные компоненты фазовой и групповой скорости этих волн направлены в противоположные стороны. Согласно определенному в настоящей работе направлению V_z , энергия АГВ и ПИВ распространяется с меньших на бо́льшие

Puc. 5. Высотные профили временных задержек или опережений τ колебаний δP относительно этих колебаний на высоте 200 км совместно с их аппроксимациями линейными зависимостями, а также относительных амплитуд δP_{max} этих колебаний для ПИВ, обнаруженных 31 августа 2016 г. с 07:00 до 12:00 UT (*a*) и с 13:00 до 17:00 UT (*b*); 1 сентября 2016 г. с 06:00 до 11:00 UT (*b*) и с 11:00 до 15:00 UT (*c*); 2 сентября 2016 г. с 09:00 до 14:00 UT (*b*); 3 сентября 2016 г. с 07:00 до 12:00 UT (*c*)

Дата	Время UT	Диапазон высот, км	Т, мин	h _{max} , км	$\delta P_{\rm max}$	V_z , м/с	<i>V_h</i> , м/с	Λ_z , км	$\Lambda_h,$ км
31.08.2016	07:00-12:00	165÷275	75	210	0.07	49	356	220	1600
31.08.2016	13:00-17:00	$150 \div 270$	85	260	0.07	34	266	174	1360
01.09.2016	06:00-11:00	$190 \div 270$	80	240	0.14	37	268	175	1285
01.09.2016	11:00-15:00	$185 \div 305$	90	240	0.18	54	454	290	2450
02.09.2016	09:00-14:00	$160 \div 290$	85	215	0.11	26	212	132	1080
03.09.2016	07:00-12:00	160÷219	80	180	0.07	26	224	124	1075

Таблица 1. Параметры волновых процессов

высоты, что соответствует упомянутым представлениям об области их генерации. Кроме того, высотный ход относительных амплитуд ПИВ (см. рис. 5) хорошо отображает особенности вертикального распространения АГВ, амплитуда которых вначале возрастает за счет уменьшения плотности нейтрального газа, достигает максимума, а затем убывает из-за усиления роли процессов переноса (диффузии, вязкости, теплопроводности), играющих существенную роль в динамике атмосферы и ионосферы на этих высотах. Таким образом, наши результаты хорошо согласуются с общепринятыми представлениями об основном механизме возникновения ПИВ, наблюдающихся в дневное время [20].

Полученные нами значения периодов, горизонтальных фазовых скоростей и длин волн указывают на то, что в дни наблюдений имели место крупномасштабные ПИВ ($\Lambda_h > 1000$ км), часто распространяющиеся из авроральной области. Возможными источниками таких волн являются джоулев нагрев, действие силы Лоренца и высыпание энергичных частиц [8]. Все эти процессы приводят к нагреву нейтральной и ионизированной компонент ионосферной плазмы, вариациям ее давления, плотности, концентрации заряженных частиц, которые в виде АГВ и ПИВ распространяются по направлению к экватору. Известно, что эти источники имеют высотную локализацию в области авроральной электроструи (80÷120 км). Поскольку в работе наблюдались ПИВ в среднеширотной ионосфере на высотах 150÷400 км (см. рис. 4, 5), имеющие направленную вверх вертикальную групповую скорость распространения, положение области генерации хорошо согласуется с полученными результатами. Стоит отметить, что дополнительным источником крупномасштабных ПИВ могут служить также среднеширотные высыпания заряженных частиц, особенно на фазе восстановления геокосмической бури [3].

Индикатором вариаций авроральной токовой струи, как известно, являются локальные изменения магнитного поля, в частности, АЕ индекса. Из сравнения рис. 1 и рис. 4 следует, что 1-3 сентября 2016 г. преобладающие ПИВ были выявлены в периоды существенного увеличения его значений (до 1000÷1500 нТл). Однако 31 августа 2016 г. также наблюдались волновые процессы, хотя и с меньшими, чем в следующие два дня, амплитудами, в то время как вариации АЕ индекса были сравнительно небольшими (максимальные значения не превышали 200 нТл). Таким образом, наши результаты подтверждают тот факт, что увеличение флуктуаций интенсивности токовой струи, скорее всего, может привести только к увеличению частоты появления ПИВ с достаточно большими амплитудами [12].

Для поиска взаимосвязи между обнаруженными ионосферными возмущениями и вариациями магнитного поля в высоких широтах был проведен спектральный анализ временных зависимостей направленной на магнитный север его горизонтальной компоненты (*N*-компоненты), зарегистрированной в геомагнитной обсерватории "Санкт-Петербург", географическая долгота которой наиболее близка к долготе харьковского радара НР (рис. 6). Расстояние вдоль меридиана между обсерваторией и радаром составляет около 1200 км. Магнитометрические данные получены из базы данных SuperMAG (http://supermag. jhuapl.edu/mag/). Периодограммы и энергограммы АПФ вариаций магнитного поля представлены на рис. 6. Как видно из рисунка, 31 августа 2016 г. колебания были локализованы в период времени 11:00–15:00 UT и имели периоды 40÷80 мин.

Рис. 6. Результаты спектрального анализа магнитометрических данных, полученных в геомагнитной обсерватории "Санкт-Петербург" (60.54° с. ш, 29.72° в. д.)

Поскольку периоды ПИВ в этот день были несколько больше, а сами возмущения наблюдались как с опережением, так и с запаздыванием, составлявшими от 2 до 4 ч относительно колебаний *N*-компоненты, волновые процессы над Харьковом, скорее всего, имели другие источники происхождения. Однако в период геокосмической бури связь между рядом ПИВ и вариациями магнитного поля прослеживается достаточно четко. Так, 1 сентября 2016 г. имели место колебания *N*-компоненты с $T \approx 90$ мин вблизи 13:00 UT, а ПИВ с тем же периодом наблюдались над Харьковом с запаздыванием 0.5÷1.5 ч. Днем 2 и 3 сентября в вариациях магнитного поля прослеживались колебания с $T \approx 80$ мин вблизи 14:00 UT и $T \approx 75$ мин вблизи 15:00 UT соответственно, которые опережали соответствующие ПИВ с близкими периодами на 1÷2 ч (см. рис. 3, 4, 6). Поскольку оцененные значения V_h для этих возмущений составили 212÷454 м/с (см. табл. 1), времена прихода волн из авроральной области (при условии, что они распространялись строго вдоль меридиана) лежат в диапазоне 0.7 ÷ 1.6 ч, что хорошо согласуется с полученными выше временами запаздывания возмущений. Для идентификации источников остальных ПИВ, обнаруженных в настоящей работе, необходимо провести дополнительные исследования.

Авторы [12] на основании статистического анализа GPS данных получили параметры крупномасштабных ПИВ над Японией (24°÷48° с. ш., $124^{\circ} \div 148^{\circ}$ в. д.). Они показали, что значения *T*, V_h и Λ_h равнялись (80±29) мин, (475±171) м/с и (2131±863) км соответственно. Наши результаты хорошо согласуются с этими значениями, если принять во внимание произведенную нами грубую оценку горизонтальных фазовой скорости и длины волны. В то же время в работе [10] на основе анализа подобных данных получены несколько отличающиеся значения параметров ПИВ над Европой (30° ÷ 70° с. ш., 10° з. д. ÷ 30° в. д.) для ряда геокосмических бурь ($T \approx (59 \pm 11)$ мин, $V_h \approx (684 \pm 195)$ м/с, среднее значение $\Lambda_h \approx$ 2000 км). Такое различие авторы [10] объясняют региональными особенностями и разными значениями склонения и наклонения магнитного поля над территорией Европы и Японии. Однако поскольку полученные нами результаты лучше согласуются с результатами работы [12], скорее всего, определяющим фактором являются особенности конкретной геокосмической бури и ее проявления в ионосфере на фоне сопутствующих физико-химических и динамических процессов.

6. Выводы

1. Проведен комплексный анализ высотно-временных вариаций мощности сигнала, температур ионов и электронов, полученных с помощью харьковского радара НР, включающий спектральную и корреляционную обработку, а также полосовую фильтрацию данных. Обнаружены ПИВ в период геокосмической бури 1–3 сентября 2016 г. и оценены параметры этих возмущений.

2. Показано, что периоды преобладающих колебаний составляли 60÷100 мин, а их длительности не превышали двух периодов. Не выявлено существенных различий в значениях этих периодов для волновых процессов, наблюдавшихся в течение бури и в предшествующий день.

3. Продемонстрировано, что выявленные ПИВ являются проявлением АГВ в ионосфере. Значения относительных амплитуд квазигармонических вариаций мощности НР сигнала 1 и 2 сентября 2016 г. примерно в 2 раза превышали значения в соседние дни. Для различных ПИВ они были как меньше, так и больше значений относительных амплитуд вариаций плазменных температур.

4. Оценены вертикальные и горизонтальные составляющие фазовой скорости и длины волны крупномасштабных ПИВ. Показано, что $V_z = 26 \div 50$ м/с, $V_h = 210 \div 455$ м/с и $\Lambda_z = 120 \div 290$ км, $\Lambda_h = 1075 \div 2450$ км.

5. Установлена взаимосвязь ряда ПИВ с изменениями магнитного поля в высоких широтах. Источниками таких ПИВ, скорее всего, являются джоулев нагрев и действие силы Лоренца, обусловленные вариациями авроральной токовой струи в период геокосмических бурь. Дополнительным источником может служить высыпание заряженных частиц в высоких и средних широтах.

Исследования выполнены в рамках научно-исследовательской работы "Исследование параметров перемещающихся ионосферных возмущений по данным сети наземных радиофизических средств", финансируемой МОН Украины (номер госрегистрации 0117U000581). Отдельные результаты были получены и обсуждались в период участия Е. Д. Аксеновой в летней школе, посвященной изучению ионосферы с помощью радаров некогерентного рассеяния (ISR Summer School), 21–27 июля 2018 г. в Массачусетском университете (Лоуэлл, США).

СПИСОК ЛИТЕРАТУРЫ

- Buonsanto M. J. Ionospheric Storms A Review. Space Sci. Rev. 1999. Vol. 88, Is. 3-4. P. 563–601. DOI: 10.1023/ A:1005107532631
- 2. Данилов А. Д. Реакция области F на геомагнитные возмущения (обзор). *Гелиогеофизические исследования*. 2013. № 5. С. 1–33. URL: http://vestnik.geospace.ru/ index.php?id=189 (дата обращения 24.12.2018)
- Черногор Л. Ф., Домнин И. Ф. Физика геокосмических бурь: Монография. Харьков: ХНУ им. В. Н. Каразина, 2014. 408 с.
- Adeniyi J. O. Magnetic storm effects on the morphology of the equatorial F2-layer. J. Atmos. Terr. Phys. 1986. Vol. 48, No. 8. P. 695–702. DOI: 10.1016/0021-9169 (86)90019-X
- Wu Y., Liu R., Zhang B., Wu Z., Hu H., Zhang S., Zhang Q., Liu J., and Honary F. Multi-instrument observations of plasma features in the Arctic ionosphere during the main phase of a geomagnetic storm in December 2006. *J. Atmos. Sol.-Terr. Phys.* 2013. Vol. 105-106. P. 358–366. DOI: 10.1016/j.jastp.2013.07.004
- 6. Соколов С. Н. Магнитные бури и их эффекты в нижней ионосфере. Различия бурь разных типов. *Геомагнетизм* и аэрономия. 2011. Т. 51, № 6. С. 757–768.
- Förster M. and Jakowski N. Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. *Surv. Geophys.* 2000. Vol. 21, Is. 1. P. 47–87. DOI: 10.1023/A:1006775125220
- Hunsucker R. D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. *Rev. Geophys. Space Phys.* 1982. Vol. 20, Is. 2. P. 293–315. DOI: 10.1029/ RG020i002p00293
- Hocke K. and Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances 1982–1995. *Ann. Geophys.* 1996. Vol. 14, Is. 5. P. 917–940. DOI: 10.1007/s00585-996-0917-6
- Borries C., Jakowski N., and Wilken V. Storm induced large scale TIDs observed in GPS derived TEC. *Ann. Geophys.* 2009. Vol. 27, Is. 4. P. 1605–1612. DOI:10.5194/ angeo-27-1605-2009
- Thome G. Long-period waves generated in the polar ionosphere during the onset of magnetic storms. *J. Geophys. Res. Atmos.* 1968. Vol. 73, Is. 19. P. 6319–6336. DOI: 10.1029/JA073i019p06319
- 12. Tsugawa T., Saito A., and Otsuka Y. A statistical study of large scale traveling ionospheric disturbances using the GPS network in Japan. *J. Geophys. Res. Space Phys.* 2004. Vol. 109, No. A6. DOI: 10.1029/2003JA010302.
- Ding F., Wan W., Liu L., Afraimovich E. L., Voeykov S.V., and Perevalova N. P. A statistical study of large scale tra-

veling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. *J. Geophys. Res. Space Phys.* 2008. Vol. 113, No. A3. id. A00A01. DOI:10.1029/2008JA013037

- Vlasov A., Kauristie K., Van de Kamp M., Luntama J.-P., and Pogoreltsev A. A study of traveling ionospheric disturbances and atmospheric gravity waves using EISCAT Svalbard Radar IPY-data. *Ann. Geophys.* 2011. Vol. 29, Is. 11. P. 2101–2116. DOI: 10.5194/angeo-29-2101-2011
- Kozlovsky A., Turunen T., and Ulich T. Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere. J. Geophys. Res. Atmos. 2013. Vol. 118, Is. 8. P. 5265–5276. DOI: 10.1002/ jgra.50474
- Domnin I. F., Chepurnyy Y. M., Emelyanov L. Y., Chernyaev S. V., Kononenko A. F., Kotov D. V., Bogomaz O. V., and Iskra D. A. Kharkiv incoherent scatter facility. *Bichuk HTY "XIII"*. Харків: НТУ "XIII", 2014. No. 47 (1089). Р. 28–42.
- Аксенова Е. Д., Панасенко С. В. Сезонные вариации параметров волновых процессов в ионосфере по данным метода некогерентного рассеяния. *Вісник НТУ* "ХПІ". Харків: НТУ "ХПІ", 2016. №. 34 (1206). С. 73–77.
- Лизунов Г. В., Кузьмич А. А. Спектральный анализ спутниковых измерений атмосферных гравитационных волн. Вісник НТУ "ХПІ". Харків: НТУ "ХПІ", 2010. № 48. С. 57–63.
- Бурмака В. П., Панасенко С. В., Черногор Л. Ф. Современные методы спектрального анализа квазипериодических процессов в геокосмосе. Успехи современной радиоэлектроники. 2007. № 11. С. 3–24.
- Hines C. O. Internal atmospheric gravity waves at ionospheric heights. *Can. J. Phys.* 1960. Vol. 38, Is 11. P. 1441–1481. DOI: 10.1139/p60-150
- 21. Брюнелли Б. Е., Намгаладзе А. А. *Физика ионосферы*. Москва: Наука, 1988. 521 с.

REFERENCES

- BUONSANTO, M. J., 1999. Ionospheric Storms A Review. *Space Sci. Rev.* vol. 88, is. 3-4, pp. 563–601. DOI: 10.1023/A:1005107532631
- DANILOV, A. D., 2013. Ionospheric F-region response to geomagnetic disturbances (review). *Heliogeophysical research*. [online] no. 5, pp. 1–33. (in Russian). [viewed 24.12.2018]. Available from: http://vestnik.geospace.ru/ index.php?id=189
- CHERNOGOR, L. F. and DOMNIN, I. F., 2014 *Physics* of *Geomagnetic Storms: monograph*. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).
- ADENIYI, J. O., 1986. Magnetic storm effects on the morphology of the equatorial F2-layer. J. Atmos. Terr. Phys. vol. 48, no. 8, pp. 695–702. DOI: 10.1016/ 0021-9169(86)90019-X
- WU, Y., LIU, R., ZHANG, B., WU, Z., HU, H., ZHANG, S., ZHANG, Q., LIU, J. and HONARY, F., 2013. Multiinstrument observations of plasma features in the Arctic ionosphere during the main phase of a geomagnetic storm

in December 2006. J. Atmos. Sol.-Terr. Phys. vol. 105-106, pp. 358–366. DOI: 10.1016/j.jastp.2013.07.004

- SOKOLOV, S. N., 2011. Magnetic storms and their effects in the lower ionosphere: Differences in storms of various types. *Geomagn. Aeron.* vol. 51, is 6, pp. 741–752. DOI: 10.1134/S0016793211050124
- FÖRSTER, M. and JAKOWSKI, N., 2000. Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. *Surv. Geophys.* vol. 21, is. 1, pp. 47–87. DOI: 10.1023/A:1006775125220
- HUNSUCKER, R. D., 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. *Rev. Geophys. Space Phys.* vol. 20, is. 2, pp. 293–315. DOI: 10.1029/RG020i002p00293
- HOCKE, K. and SCHLEGEL, K., 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances 1982–1995. Ann. Geophys. vol. 14, is. 5, pp. 917–940. DOI: 10.1007/s00585-996-0917-6
- BORRIES, C., JAKOWSKI, N. and WILLEN, V., 2009. Storm induced large scale TIDs observed in GPS derived TEC. *Ann. Geophys.* vol. 27, is. 4, pp. 1605–1612. DOI: 10.5194/angeo-27-1605-2009
- THOME, G., 1968. Long-period waves generated in the polar ionosphere during the onset of magnetic storms. *J. Geophys. Res. Atmos.* vol. 73, no. 19, pp. 6319–6336. DOI: 10.1029/JA073i019p06319
- TSUGAWA, T., SAITO, A. and OTSUKA, Y., 2004. A statistical study of large scale traveling ionospheric disturbances using the GPS network in Japan. J. Geophys. Res. Space Phys. vol. 109, no. A6. DOI: 10.1029/ 2003JA010302.
- DING, F., WAN, W., LIU, L., AFRAIMOVICH, E. L., VOEYKOV, S. V. and PEREVALOVA, N. P., 2008. A statistical study of large scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J. Geophys. Res. Space Phys. vol. 113, no. A3, id. A00A01. DOI: 10.1029/ 2008JA013037
- VLASOV, A., KAURISTIE, K., VAN DE KAMP, M., LUNTAMA, J.-P. and POGORELTSEV, A., 2011. A study of traveling ionospheric disturbances and atmospheric gravity waves using EISCAT Svalbard Radar IPY-data. *Ann. Geophys.* vol. 29, is. 11, pp. 2101–2116. DOI: 10.5194/angeo-29-2101-2011
- KOZLOVSKY, A., TURUNEN, T. and ULICH, T., 2013. Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere. J. Geophys. Res. Atmos. vol. 118, is. 8, pp. 5265–5276. DOI: 10.1002/ jgra.50474
- DOMNIN, I. F., CHEPURNYY, Y. M., EMELYANOV, L. Y., CHERNYAEV, S. V., KONONENKO, A. F., KOTOV, D. V., BOGOMAZ, O. V. and ISKRA, D. A., 2014. Kharkiv incoherent scatter facility. *Bulletin of NTU "KhPI"*. Kharkiv: NTU "KhPI". no. 47 (1089), pp. 28–42.
- AKSONOVA, K. D. and PANASENKO, S. V., 2016. Seasonal variations in the parameters of wave processes in the ionosphere according to the method of incoherent scattering. *Bulletin of NTU "KhPI"*. Kharkiv: NTU "KhPI". no. 34 (1206), pp. 73–77. (in Russian).
- 18. LIZUNOV, G. V. and KUZMICH, A. A., 2010. Spectral analysis of satellite measurements of atmospheric gravity

ISSN 1027-9636. Радіофізика і радіоастрономія. Т. 24, № 1, 2019

waves. *Bulletin of NTU "KhPI"*. Kharkiv: NTU "KhPI". no. 48, pp. 57–63. (in Russian).

- BURMAKA, V. P., PANASENKO, S. V. and CHER-NOGOR, L. F., 2007. Modern methods of spectral analysis of quasiperiodic processes in the geospace. Uspekhi Sovremennoi Radioelektroniki. no. 11, pp. 3–24. (in Russian).
- HINES, C. O., 1960. Internal atmospheric gravity waves at ionospheric heights. *Can. J. Phys.* vol. 38, is 11, pp. 1441–1481. DOI: 10.1139/p60-150
- 21. BRUNELLI, B. E. and NAMGALADZE, A. A., 1988. *Physics of Ionosphere*. Moscow, USSR: Nauka Publ. (in Russian).

K. D. Aksonova¹ and S. V. Panasenko²

¹Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 4, Mystetstv St., Kharkiv, 61002, Ukraine

²Institute of Ionosphere, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, 16, Kyrpychov St., Kharkiv, 61002, Ukraine

MANIFESTATIONS OF WAVE PROCESSES IN IONOSPHERIC PLASMA PARAMETERS DURING THE GEOSPACE STORM ON 1–3 SEPTEMBER, 2016

Purpose: Analysis of wave processes during the geospace storms in the mid-latitude ionosphere, obtaining the height-temporal dependences of relative variations of the receiving incoherent scattering radar signal power, temperatures of electrons and ions, calculation of the parameters of traveling ionospheric disturbances – relative amplitudes, vertical and and horizontal components of phase velocity (V_z and V_h) and wavelengths (Λ_z and Λ_h).

Design/methodology/approach: In obtaining the results, the spectral analysis using the Adaptive Fourier Transform was used. Then the data were subjected to band-filtering using a digital filter. Phase rates of perturbations were determined by the cross-correlation analysis of temporal variations in signal strength.

Findings: It was established that the observed storm, during which the geomagnetic activity index was reaching the value of $K_p = 6$, contributed to the enhancement of acoustic-gravity waves and traveling ionospheric disturbances. The spectral analysis showed that the periods of prevailing oscillations were in the range of 60-100 min, with the duration of no more than two periods. The signal power relative amplitudes varied within 0.02-0.2, and relative amplitudes of electron and ion temperatures – within 0.03-0.12. It was demonstrated that the values of amplitudes of quasigarmonic variations in signal power on September 1 and 2, 2016 approximately 2 times exceeded those in the adjacent days when the K_p -index was lower. It is shown that $V_z = 26-50$ m/s, $V_h = 210-455$ m/s and $\Lambda_z = 120-290$ km, $\Lambda_h = 1075-2450$ km.

Conclusions: The disturbances in the ionosphere were found at altitudes of 150 - 400 km, with the extension of their vertical group velocities upwards. The values of parameters of disturbances obtained in data processing indicate that large-scale traveling ionospheric disturbances took place at the observation day.

Possible sources of such waves are Joule heating, the Lorentz force effect and eruption of energetic particles.

Key words: incoherent scattering radar, variations of power and plasma temperatures, geospace storm, parameters of traveling ionospheric disturbances

К. Д. Аксьонова¹, С. В. Панасенко²

¹ Радіоастрономічний інститут НАН України, вул. Мистецтв, 4, м. Харків, 61002, Україна

² Інститут іоносфери НАН та МОН України, вул. Кирпичова, 16, м. Харків, 61002, Україна

ПРОЯВИ ХВИЛЬОВИХ ПРОЦЕСІВ У ПАРАМЕТРАХ ІОНОСФЕРНОЇ ПЛАЗМИ В ПЕРІОД ГЕОКОСМІЧНОЇ БУРІ 1–3 ВЕРЕСНЯ 2016 Р.

Предмет і мета роботи: Аналіз хвильових процесів у період геокосмічної бурі в середньоширотній іоносфері, отримання висотно-часових залежностей відносних варіацій потужності прийнятого сигналу радара некогерентного розсіяння, температур електронів та іонів, розрахунок параметрів рухомих іоносферних збурень – відносних амплітуд, вертикальної та горизонтальної складових фазової швидкості $(V_z та V_h)$ та довжини хвиль $(\Lambda_z i \Lambda_h)$.

Методи та методологія: Для отримання результатів використовувався спектральний аналіз із застосуванням адаптивного перетворення Фур'є. У подальшому дані піддавалися смуговій фільтрації за допомогою цифрового фільтра. Фазові швидкості збурень визначалися шляхом крос-кореляційного аналізу часових варіацій потужності сигналу.

Результати: Встановлено, що спостережувана буря, під час якої індекс геомагнітної активності сягав значення $K_p = 6$, сприяла посиленню акустико-гравітаційних хвиль і рухомих іоносферних збурень. Спектральний аналіз показав, що періоди переважаючих коливань знаходилися в діапазоні $60 \div 100\,$ хв, а їх тривалість не перевищувала двох періодів. Відносні амплітуди потужності сигналу змінювалися в межах $0.02 \div 0.2$, а відносні амплітуди температур електронів та іонів – в межах $0.03 \div 0.12$. Продемонстровано, що значення амплітуди квазігармонічних варіацій потужності сигналу 1 і 2 вересня 2016 р. приблизно вдвічі перевищували значення в сусідні дні, коли K_p -індекс був нижчим. Показано, що $V_z = 26 \div 50\,$ м/с, $V_h = 210 \div 455\,$ м/с і $\Lambda_z = 120 \div 290\,$ км, $\Lambda_h = 1075 \div 2450\,$ км.

Висновок: Були виявлені збурення в іоносфері на висотах 150÷400 км з поширенням їх вертикальної групової швидкості вгору. Отримані в ході обробки даних значення параметрів збурень вказують на те, що у дні спостережень мали місце великомасштабні рухомі іоносферні збурення. Можливими джерелами таких хвиль є джоулів нагрів, дія сили Лоренца і висип енергійних частинок.

Ключові слова: радар некогерентного розсіювання, варіації потужності і плазмових температур, геокосмічна буря, параметри рухомих іоносферних збурень

Статья поступила в редакцию 27.12.2018