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ANALYSIS OF MOON’S GRAVITATIONAL-WAVE AND 

EARTH’S GLOBAL TEMPERATURE: INFLUENCE OF TIME-

TREND AND CYCLIC CHANGE OF DISTANCE FROM MOON 

YOSHIO MATSUKI, PETRO I. BIDYUK 

Abstract. This research examined the influence of Moon’s gravitational-wave to 
Earth’s global warming process and the effects of time-trend and cyclic change of 
the distance between Moon and Earth. In the pervious research [1], we found that 
the Moon’s gravitational-wave could influence the process of the Earth’s global 
warming; and, we also found that Moon’s cyclic movement around Earth needed to 
be further investigated, because it gave a unique pattern of distribution in the data 
for the empirical analysis; while both global temperature and global carbon-dioxide 
increase almost linearly in the time-series. In this research we added dummy binary 
variables that simulate the trend of time and the cyclic changes. As a result we con-
firmed that the influence of Moon’s gravitational-wave is significant in the process 
of rising global temperature on Earth. 

Keywords: global temperature, Moon’s gravitational-wave, trend removal, cyclic 
change. 

INTRODUCTION 

Our previous research [1] investigated the influence of Moon’s gravitational-wave 
to the process of Earth’s global warming with the methodology of empirical anal-
ysis with the database of Earth’s global temperature and global carbon dioxide as 
well as the distance between Moon and Earth. Then, the result of the analysis 
suggested that there was a possibility such that Moon’s gravitational-wave influ-
enced Earth’s atmospheric temperature than global carbon dioxide could do. 
However, the uncertainty of the analysis [1] was also large, due to the cyclic 
change of the distance between Moon and Earth. In the previous research [1], we 
attempted to reduce this uncertainty, by assuming pure-heteroskedasticity and the 
first-order autoregressive process of Generalized Classical Regression models; 
however, we didn’t know if these assumptions were appropriate in order to ex-
plain the cyclic change of the distance between Moon and Earth.  

Considering the above result [1], in this research, we continued the empirical 
analysis of the same database with different techniques: maximum-likelihood es-
timation, trend removal, and removal of the influence of the cyclic change of the 
distance between Moon and Earth, by adding binary variables.  

The gravitational-wave was a theoretical possibility when we made the pre-
vious research [1]; also, we didn’t calculate the intensity of the gravitational-
wave. Instead, we used the inverse of the squared distance between Moon and 
Earth as the surrogate of the gravitational-wave, because our mathematical meth-
od uses the deviations of the values of the variables, not necessarily the intensities 
of physical energy.  
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METHOD 

The descriptive statistics of the data, from 1987 till 2009, of the global tempera-
ture (increased degree Celsius since 1978) [2], the global carbon dioxide (million 
tons) [3], the distance between Moon and Earth ( r : kilometers) [4], and calcu-

lated 
2

1

r
((kilometers)--22)),,  are shown in Table 1.  

T a b l e  1 .  Descriptive statistics 

Variable 
Global  

Temperature 
oC * 

CO2  
mil. tons** 

Distance between 
Moon and Earth 

r, km 
2

1

r
, 

km22 
Mean 0,29130 1,25165 · 103 3,62618 · 105 7,60509 · 10-12 

Standard  
deviation 0,12125 2,14245 · 102 5,98411 · 102 2,51097 · 10-14 

Minimum 0,10000 8,92000 · 102 3,61583 · 105 7,56999 · 10-12 
Maximum 0,43000 1,62600 · 103 3,63483 · 105 7,64865 · 10-12 
Skewness  -0,21063 0,14292 -0,15249 0,15787 
Kurtosis  1,29401 1,82491 1,67498 1,67879 

Valid number 
of observations 23 23 23 23 

* Increased degree Celsius since 1978. 
** To convert these estimates to units of carbon dioxide (CO2), simply multiply these es-
timates by 3,667 [3]. 

Analysis is made on the global temperature, the global CO2 and 
2

1

r
, with 

the following methods: 
1. Maximum Likelihood Estimation. This method is an alternative ap-

proach, beside the Least Squares Estimation of Linear Classical Regression Mod-
el.  The global temperature },,{ 1 nyyY  , the constant value 1 ( 1x ), the meas-

ured global CO2 )( 2x , and 
2

1

r
 ( 3x ), are transformed into the forms 

of 1n vectors, y , 1x , 2x , 3x , where n is the number of observation, 23. Then 

kn matrix },,{ 321 xxxX   is defined, where 3)(rank  Xk  and X is non-
stochastic. And, we assume that the data in Table 1 are samples from a real na-

ture, which are multivariate normally distributed i.e. ),(~ 2IXNY  , where 

)(YEX  , )(2 YVI  , I  is a unit matrix whose diagonal elements 

are 1, and non-diagonal elements are 0, and )(YE  is a mean value of Y  ( 2ii  

for all i , and that 0hi  for all ih  ). And 





 

2
exp)2()( 2

1
2 w

Yf
n

, 

where  1'w ,  Y , 
)det(

1
2

1


 

, and in this model, I









2

1 1
, 

n)( 2 ,  XY .  
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And then 











2
222

2

'
exp)()2()(

nn

Yf . Now, the Maximum Likelihood 

estimates of   and 2  are the values that maximize 





 )2log(

2
log

n
L  

2
2 '

2

1
)log(

2 

















n
. Then L  is maximized by minimizing '  with respect 

to  . So,   is identical to the coefficients of the Least Squares Estimation of Lin-

ear Classical Regression Model ([1]). Now, inserting solution value for   makes 
ee''  , with XbYe  , which leaves the “concentrated log-likelihood func-

tion”, as 
2

222* '

2

1
)log(

2
)2(log

2
),()(
























eenn
bLL , to be maxi-

mized with respect to 2 . The first derivative is 
422

'

2

1)2(*














 eenL

. 

Equating 
2

*


L

 to zero and solving it gives the Maximum Likelihood estimator 

of 2  as 
n

ee'
.  

2. Trend Removal. At first, we define 11 x  and tx 2 , where t is a series 
of time. (Here we simply use a series of the values from 1 to 23 as the values of 
t ). Then },{ 211 xxX  and },{ 432 xxX  , where 3x is the measured global CO2, 

and 4x is the 
2

1

r
. And then, we calculate the residuals *

2X  from the regression of 

2X  on 1X , following the matrix algebra bellow: 

111 ' XXQ  , where '1X  is a transposed matrix of the matrix 1X ; 

21
1

1 ' XXQb  , where  1
1
Q  is an inversed matrix of the matrix 1Q ; 

bXX 22
ˆ  ; 

22
*
2 X̂XX  . 

Now *
2X is the de-trended values of },{ 432 xxX  . We also calculate the de-

trended values of Y (global temperature), by calculating YbY ˆ , and then 

YYY ˆ*  , where *Y is the de-trended values of Y . 
And then, we implement the Least Squares Estimation of Linear Classical 

Regression Model of the de-trended global temperature *Y  over *
2X , with the 

following steps:  
*

2
*

2
* ' XXQ  ; 

**
2

1*
1 'YXQb


 ; 

1
**ˆ bYY  : expected de-trended global temperature Y ; 

** ŶYe  ; 
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1*
11

'
)(




 Q

kn

ee
bV . 

And square-root of the diagonal elements of )( 1bV  are the standard errors of 

elements of the estimated coefficient-vector, 1b . 

3. Removal of Seasonal (cyclic) Influence. Moon and Earth became closer 
every 4 years as shown in Fig. 1. In order to remove (de-seasonalize) the influ-
ence of the cyclic pattern from the explanatory variables (the measured global 

CO2 and 
2

1

r
), at first, we define four binary dummy variables: 

 









otherwise 0

20072003,1999,1995,1991, 1987, in 1
1x ;  

 









otherwise 0

20082004,2000,1996,1992,1988, in 1
2x ; 

 









otherwise 0

20092005,2001,1997,1993,1989, in 1
3x ; 

 









otherwise0

20062002,1998,1994,1990,in  1
4x . 

Then we set },,,{ 43211 xxxxX  . Then we calculate the Least Squares Esti-

mation of Linear Classical Regression Model of the global temperature Y  over 

1X  in order to get residuals YYY ˆ*  , with the following steps:  

11' XXQ  ;  

YXQb '1
1*

1
 ;  

*
11

ˆ bXY  : expected global temperatureY ; 

YYY ˆ*  . 

Now the elements of *Y  are the de-seasonalized values of global tem-
perature. 

And then we remove the influence of the cyclic change of the distance be-

tween Moon and Earth from the measured global CO2 ( 2z ), and 
2

1

r
( 3z ). For this 

purpose, at first, we regress },{ 324 zzX   on the dummy variables 1X , to get the 

coefficient 41
1

11 )'( XXXXF   and residuals FXXX 14
*
4  , which removes 

the influence of the cyclic change of the distance between Moon and Earth 
from 4X . Then we make the Least Squares Estimation of the de-seasonalized 

variable *Y  on the de-seasonalized explanatory variables *
4X , from which the 

influence of cyclic change of the distance between Moon and Earth has been re-
moved, with the following steps:  
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*
4

*
45 ' XXQ  ; 

*'*
4

1
55 YXQb  ; 

5
*
45 * bXYe  ; 

1
5

55
5

'
)( 


 Q

kn

ee
bV . 

And square-root of each diagonal element of )( 5bV  is the standard error of 

each element of the estimated coefficient-vector 5b . 

RESULTS 

1. Result of Maximum Likelihood Estimation. Table 2 and Table 3 show 
the result of the Maximum Likelihood Estimation. 

T a b l e  2 .  Maximum Likelihood Estimation: coefficients and standard errors 

Variable Coefficient  Standard error* 
Intercept (1) -1,17897 1,67861 · 103 

CO2 5,32537 · 10-4 2,95105 · 10-2 

2

1

r
 1,05675 · 1011 2,19071 · 1014 

*Each standard error of each coefficient is square-root of diagonal element in Table 3. 

T a b l e  3 .  Variances and Covariances of Maximum Likelihood Estimation 

Variable Intercept CO2 2

1

r
 

Intercept (1) 2,81774 · 106  -16,03004 -3,67640 · 1017 
CO2 -16,03004 8,70867 · 10-4 1,95292 · 1012 

2

1

r
 -3,67640 · 1017 1,95292 · 1012 4,79922 · 1028 

 

2. Result of Trend Removal. At first, we made the regression of 2X on 1X . 
The calculated coefficient b is shown in Table 4. 

D
is

ta
nc

e,
 k

m
 

Fig. 1. Distance between Moon and Earth [1] 
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T a b l e  4 .  Computing b: 21
1

1 XXQb    

8,75075 · 102 7,60732 · 10-12 
31,38142 -1,85867 · 10-16 

 

And then we calculated the de-trended values of },{ 432 xxX  , where 3x  is 

CO2 and 4x  is 2/1 r , by calculating bXX 22
ˆ  , and then 22

*
2 X̂XX  , 

where *
2X  is the de-trended values of 2X . We also calculated the de-trended 

values of Y  (global temperature), by calculating YbY ˆ , and then YYY ˆ*  , 

where *Y  is the de-trended values of Y . The descriptive statistics of the adjusted 

(de-trended) values ( *Y  and *
2X ) are shown in Table 5. The global temperatures 

before and after the removal of trend are shown in Fig. 2, and the values of CO2 

and 2/1 r  before and after the removal of trend are shown in Fig. 3. 

T a b l e  5 .  Descriptive statistics of de-trended values of global temperature, 
CO2 and 2/1 r  

Variable 
Global  

Temperature 
o
C 

CO2, mil. tons  2/1 r , km22 

Mean -1,48809 · 10-9 -7,25622 · 10-8 -9,10100 · 10-21 
Standard deviation 3,07795 · 10-2 24,50602 2,50781 · 10-14 

Minimum -6,15217 · 10-2 -33,79644 -3,59113 · 10-14 
Maximum 4,22332 · 10-2 60,53360 4,26366 · 10-14 
Skewness  -0,28508 0,41789 0,14935 
Kurtosis  1,89185 2,41821 1,66733 

Valid number  
of observations 23 23 23 

 

 

Fig. 2. Global temperatures with and without trend removal ( *Y  and Y ) 
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And then we calculated the Least Squares Estimation of the de-trended glob-

al temperature *Y  over *
2X . At first, we calculated *

2
*

2
* ' XXQ  , and 

**
2

1*
1 YXQb 


. Table 6 shows the calculated 1b . 

T a b l e  6 .  Comprting 1b : **
2

1*
1 YXQb 


 

Variable Values of 1b  

Intercept*  for 11 x  1b : 7,94412 · 10-2 

Intercept*  for tx 2  1b : 1,76544 · 10-2 

CO2 -1,15220 · 10-5 
2/1 r  1,89763 · 109 

*To calculate 1b  for the intercepts (each of 1x  and 2x ), we calculated YXQb 1
1

1
*   , and 

then 21
1

1 XXQF   , and then 1
*

1 Fbbb  . 

And then we calculated ** ŶYe   and 
1*

11
'

)(



 Q

kn

ee
bV  to calculate the 

standard errors of elements of the estimated coefficient-vector 1b . Table 7 shows 

the calculated values of )( 1bV , and Table 8 shows the calculated values of stan-

dard errors of 1b . 

T a b l e  7 .  Comprting V: )( 1bV  

Variable CO2 2/1 r  

CO2 1,02316 · 10-9 -1,68386 · 105 
2/1 r  -1,68386 · 105 2,84905 · 1019  

 

CO2                                Detrented CO2

1/r2
              Detrented 1/r2 

Detrented 1/r 2

1/r 2

CO2 

Fig. 3. Comprting CO2  and 2/1 r  before and after trend removal ( 4X  and *
4X ) 
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T a b l e  8 .  Standard errors of 1b  

Variable Standard errors of 1b  

Intercept*  for 11 x  1,39138 · 10-2 

Intercept*  for tx 2  1,01477 · 10-3 

CO2 3,19869 · 10-5 
2/1 r  5,33765 · 109 

*To calculate standard errors for the intercepts ( 1x  and 2x ), we calculated 

1
1

111 XQXN    and *
111 )( YNIe  , 1

1
11

1
'

)( 


 Q

kn

ee
bV , and then calculated the 

square root of the diagonal element of )( 1bV . 

3. Result of Removal of Seasonal (cyclic) Influence. At first, we 
set },,,{ 43211 xxxxX  . Then, we calculated the Least Squares Estimation of the 

global temperature Y over 1X in order to get the de-seasonalized values of global 

temperature YYY ˆ*  (Fig. 4), after calculating 11' XXQ  , YXQb '1
1*

1
  

(Table 9), and *
11

ˆ bXY  .  

T a b l e  9 .  Comprting *
1b : YXQb 1

1*
1    

Variable 1x  2x  3x  4x  

Coefficient 0,27500 0,29000 0,30500 0,29600 
 

And then, we implemented the Least Squares Estimation of 4X on the dum-

my variables 1X , to get the coefficient 41
1

11 )( XXXXF   (Table 10) and re-

Fig. 4. Global temperatures with and without seasonal adjustment ( *Y  and Y ) 



Analysis of Moon’s gravitational-wave and Earth’s global temperature: … 

Системні дослідження та інформаційні технології, 2018, № 3 27

siduals FXXX 14
*
4   (Fig. 5), to de-seasonalize 4X  (to remove the influence 

of the cyclic change of the distance between Moon and Earth from 4X ). 

( },{ 324 zzX  , where 2z  is the measured global CO2, and 3z  is 2/1 r ). Table 11 
shows descriptive statistics of de-seasonalized values of global temperature, CO2 
and 2/1 r . 

T a b l e  1 0 .  Coefficient F  

Variable CO2 2/1 r  

1x  1,21717 · 103 7,60012 · 10-12  

2x  1,26083 · 103 7,58701 · 10-12  

3x  1,27717 · 103 7,61690 · 10-12  

4x  1,25140 · 103  7,61857 · 10-12  
 

T a b l e  1 1 .  Descriptive statistics of de-seasonalized values of global tempera-
ture, CO2 and 2/1 r  

Variable 
De-seasonalized global 

temperature, oC  
De-seasonalized 
CO2, mil. tons 

De-seasonalized 2/1 r , 
km 

Mean -3,64431 · 10-10 -5,80497 · 10-5  1,13682 · 10-20 
Standard deviation 0,12072 2,13017 · 102 2,13368 · 10-14 

Minimum -0,17500 -3,25833 · 102 -4,33389 · 10-14 
Maximum 0,14500 3,65167 · 102 4,30634 · 10-14 
Skewness  -0,19145 0,15571 9,76442 · 10-2 
Kurtosis  1,28736 1,79673 2,29807 

Valid number  
of observations 23 23 23 

CO2                  De-seasonanalized CO2 1/r2
    De-seasonanalized 1/r2 

1/r 2

CO2 

Fig. 5. Values of CO2 and 2/1 r after removal of the influence of the cyclic change ( 4X  and *
4X ) 
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Then we implemented the Least Squares Estimation of the de-seasonalized global 

temperature *Y on the de-seasonalized explanatory variables *
4X , from which the 

influence of cyclic movement of Moon has been removed. Table 12 shows the 
result of the Least Squares Estimation.  

T a b l e  1 2 .  Result of the Least Squares Estimation of *Y  on the de-seasonalized 

explanatory variables *
4X  

Parameter Coefficient Standard error 
1st cycle -0,77339 5,16897 · 10-2  
2nd cycle -0,78101 5,16897 · 10-2 
3rd cycle -0,77630 5,16897 · 10-2 

Intercept * 

4th cycle -0,77163 5,66233 · 10-2 

CO2 5,33726 · 10-4  4,29402 · 10-5  
2/1 r  5,24677 · 1010  4,28696 · 1011  

*To get the coefficients of intercepts for 4 periods of the cycle, at first we calculated 

YXQb 1
1*

1
 , and then, 2

*
11 Fbbb  , where 2b is the coefficients of CO2 and 2/1 r  in 

Table 12.  And, to get the standard errors for the intercepts, we calculated YQXN 1
11

  

and YNIe )( 111  , 111
1)( 




 Q
kn

ee
bV , and then calculated the square root of the di-

agonal element of )( 1bV . 

ANALYSIS OF THE RESULTS 

In this research, we investigated influence of the trend (time) and the cyclic 
change of the distance between Moon and Earth. For this purpose, we set dummy 
binary variables, which replaced the intercept vectors of the Classical Regression 
Model, and then we calculated the coefficients of the Least Square Estimations 
between these binary variables and the global temperature and the explanatory 

variables (CO2 and 
2

1

r
), and then, we calculated expected influences to those 

variables from each of the trend (time) and the cyclic change; and then, we sub-
tracted those expected values from the original values of the variables, in order to 
make the de-trended variables and the de-seasonalized variables. As the result, we 

observed that the coefficient of 2/1 r is larger than the coefficient of CO2. This ob-
servation suggests that there is the influence of Moon’s gravitational-wave to 
Earth’s global temperature, which we also observed in our previous research [1].  

In addition, the Maximum Likelihood Estimation shows almost as same val-
ues of the coefficients as in the Least Squares Estimation of Linear Classical Re-
gression Model [1], while their standard errors of the coefficients are larger than 
those of the Least Squares Estimation. These differences of the standard errors are 
due to the difference of the algorithm of these two approaches: the values of the 
standard errors of the Least Squares Estimation are algebraically calculated, while 
the values of the Maximum Likelihood Estimation were searched numerically. 
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With the trend removal, the coefficient of global CO2 became negative, be-
cause this process deformed the values of the global temperature and CO2, as 
Fig. 2, 3 show.  

Table 13, Table 14 and Table 15 show the results of the analysis, including 
the results of our previous research [1].  Among these 7 models in Table 13, 14, 15, 
the Pure Heteroskedasticity model and the Cobb-Douglas model (non-linear) 

show the larger coefficient of CO2 than to the coefficient of 
2

1

r
. Here, the Pure 

Heteroskedastic model assumes uneven distribution of the data, although the de-
viations of the values do not reflect the uneven distributions of global temperature 
and CO2, which are as shown from Fig. 2–5; therefore, this model does not de-
scribe the data correctly. Also, the Cobb-Douglas model does not describe the 
distributions of the global temperature and CO2, which are almost linearly distrib-

uted as Fig. 2, 3 show. On the other hand, the values of 
2

1

r
 are on a same curve, 

therefore they are neither uniformly distributed, nor unevenly distributed; and, we 

conclude that this characteristic of 
2

1

r
 gives the relatively large standard errors of 

the coefficient of 
2

1

r
. 

T a b l e  1 3 .  Comparison of calculated coefficients and standard errors 

Variable  
and coeficients 

Classical  
Regression [1]

Maximum 
Likelihood 
Estimation 

Trend  
removal 

Removal  
of seasonal  

(cyclic) influence 
Intercept -1,17863 -1,17897  See Table 6 See Table 12 

CO2 5,33150 · 10-4 5,32537 · 10-4 -1,15220 · 10-5 5,33726 · 10-4 Coefficient 
2/1 r * 1,05537 · 1011 1,05675 · 1011 1,89763 · 109 5,24677 · 1010 

Intercept 2,77830 1,67861 · 103 See Table 8 See Table 12 
CO2 4,27704 · 10-5 2,95105 · 10-2 3,19869 · 10-5 4,29402 · 10-5 Standard 

error 
2/1 r ** 3,64933 · 1011 2,19071 · 1014 5,33765 · 109 4,28696 · 1011 

 * : ** 1 ; 3,46 1 ;: 2070 1;: 2,81 1 ;: 8,17 
 

T a b l e  1 4 . Coefficients and standard errors of the coefficients in Generalized
Classical Regression Model [1] 

Pure Heteroskedasticity 
First-Order  

Autoregressive Process Variable 
Coefficient Standard error Coefficient Standard error 

for 1 ( 1x ) -9,72055 22,91283 0,37507 0,78957 

for Carbon 
dioxide ( 2x ) 0,94202 7,55710 · 10-2 1,36503 · 10-5 1,17412 · 10-4 

for 
2

1

r
 ( 3x ) 2,18557 · 10-2  * 7,55709 · 10-3 ** 6,61708 · 109  * 9,71690 · 1010  ** 

* : ** 2,89 : 1 1 : 14,7 
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T a b l e  1 5 . Coefficients of Cobb-Douglas model, 3
321

2 bb xxby   [1] 

Coefficients Estimated coefficient Standard error 

1b , coefficient of 1  0,000103 0,02761 

2b , coefficient of 2x  2,126546 0,23431 

3b , coefficient of 3x  0,283107 * 10,62035 ** 

* :** 1 : 37,5. 

Note: y : global temperature; 2x : carbon-dioxide; 
23

1
:

r
x . 

CONCLUSION AND RECOMMENDATION  

We have examined the potential influence of Moon’s gravitational-wave to 
Earth’s global temperature, in comparison with global CO2, using 7 mathematical 
models for the empirical analysis. As the result, the influence of Moon’s gravita-
tional-wave was found to have some relation with Earth’s temperature rise, with 
the Least Squares Estimation of Classical Regression Model, the First-Order Au-
toregressive Process of Generalized Classical Regression Model, the Maximum 
Likelihood Estimation, the Least Squares Estimation after the removal of trend 
(time), and after the removal of seasonal (cyclic) influence; while, the assumption 
of Pure Heteroskecasticity and Cobb-Douglas model (non-linear) are not appro-
priate  for this analysis, in regard to the linearly distributed Earth’s global tem-
perature and global CO2 in time series.  

The further study is needed to identify the meaning of the uncertain relation 
between the inverse of squared distance between Moon and Earth and Earth’s 
temperature rise.  
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