УДК:656.085:656.086:629.5.06: 621.431.74:621.431.74.052

Калугин В. Н. ОНМА

АНАЛИЗ НАДЁЖНОСТИ СУДОВЫХ ДИЗЕЛЕЙ

Цели и задачи анализа информации о надежности судовых технических средств.

Повышение качества судовых технических средств (СТС), а также совершенствование методов технической эксплуатации в значительной степени связаны с анализом информации о результатах их эксплуатации. Эта информация является важным каналом обратной связи, которая влияет на СТС на всех стадиях их жизненного цикла при реализации процессов проектирования, изготовления и эксплуатации. Кроме того, она позволяет вносить соответствующие корректировки с целью обеспечения требуемых показателей надежности СТС. Сбор, обработка и анализ информации о надежности СТС способствует решению следующих задач:

- определение причин возникновения отказов и повреждений;
- выявление и устранение конструктивных недостатков, проявившихся в процессе эксплуатации;
- определение фактического уровня надежности СТС при различных условиях эксплуатации;
- определение номенклатуры наиболее надежных образцов СТС и технических решений, отвечающих требованиям классификационных обществ, судовладельцев, а также нормативным требованиям (международных конвенций и соглашений, национальным, региональным и др.);
- определение ресурсных характеристик и срока службы СТС;
- определение объемов и периодичности технического обслуживания и ремонта (ТО и Р);
- определение номенклатуры и количества сменно-запасных деталей и расходных материалов;
- разработка технических требований к заводам-изготовителям относительно характеристик надежности СТС в эксплуатации.

Информация о количественных характеристиках надежности должна отвечать определенным требованиям, основными из которых являются: полнота, достоверность и своевременность. На основании полученной информации формируется информационная база данных

о количественных качественных характеристиках надежности СТС, трудоемкости ТО и Р, движении сменно-запасных деталей.

Качественный анализ показателей надёжности позволяет: устанавливать степень влияния отказов и повреждений СТС на работоспособность отдельных агрегатов, систем и судна в целом; выявлять наименее надежные компоненты судовой техники; определять комплекс мер, решение которых позволит обеспечить должный уровень работоспособности СТС.

Количественный анализ информации о надежности даёт возможность определить фактический уровень надежности судовой техники, путем использования определенных аналитических зависимостей. При оценке количественных характеристик, основными величинами, которые используются в расчетах, являются: количество отказов за выбранный временной интервал, наработка до отказа, относительные характеристики отказов и др.

Анализ показателей надежности СТС, выполненные «Lloyd's Register» и «Swedish Club». Классификационным обществом «Lloyd's Register» - LR, была создана системная информационная база данных о надежности СТС, которая формировалась на основе технических отчетов сюрвейеров [1]. Используя информационную базу данных системы, была проведена выборка наиболее вероятных неисправностей, которые вызвали отказы различных типов судовых двигателей, которые находились в эксплуатации, и причины их характерных отказов, более чем за 10-и летний период. Выборка данных была проведена для всех судов находящихся под наблюдением LR и классифицировалась по трем группам: главные двухтактные ДВС, главные четырёхтактные ДВС и вспомогательные четырёхтактные ДВС.

Шведским страховым обществом «Swedish Club» - SC приведены результаты анализа страховых исков о возмещении убытков вызванных авариями и аварийными событиями с судами за шестилетний период, связанные с отказами СТС и главных судовых двигателей[2].

В настоящее время SC является одним из ведущих мировых страховых обществ в морском судоходстве. Схема страхования состоит из трех элементов. Для целей анализа надёжности интерес представляет возмещении убытков по виду страхования H&M («Hulls and Machinery insurance») - страхование корпуса, механизмов

и оборудования судов, основные результаты которого приведены ниже.

Таблица 1. Количество аварий и аварийных событий,	связанных с
корпусом, механизмами и оборудованием судов	- H&M

Категории аварий и аварийных	Общее количество	Относительное
происшествий с судами – Н&М		количество, %
Машины и механизмы	558	45
Контакт корпуса судна	172	14
Посадка на мель	133	11
Столкновения	130	11
Плохие погодные условия	53	4
Пожары и взрывы	24	2
Другие причины	168	13
Всего	1238	100

В SC было зарегистрировано 1238 аварий и аварийных происшествий с судами по семи категориям исковых требований по Н&М. Необходимо отметить, что категория «Машины и механизмы» является ведущей причиной аварий и аварийных происшествий с судами и составили 45% от общего количества зарегистрированных аварий и аварийных происшествий с судами. Исковые требования, связанные с отказами машин и механизмов были систематизированы шести категориям, приведенным в таблице 2.

Таблица 2. Отказы машин и механизмов - Н&М

Аварии и аварийные происшествия с судами вызванные отказами машин и механизмов - H&M	Количество отказов	Относительное количество отка- зов, %
Главные двигатели	232	42
Вспомогательные двигатели	120	21
Рулевые машины и механизмы	66	12
Котлы	65	12
Движители	63	11
Другие причины	12	2
Всего	558	100

Отказы главных двигателей являются основной причиной отказов по категории «Машины и механизмы» и составляет 42% от общего количества отказов по этой категории.

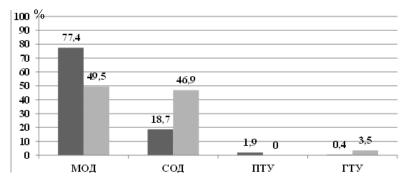


Рис.1. Относительное количество судов, зарегистрированных в SC в зависимости от типа главной судовой энергетической установки и количество аварий или аварийных происшествий с судами, которые связаны с их отказами

Среднеоборотные двигатели (СОД) характеризуются чрезмерно большим количеством отказов, приводящих к авариям и аварийных происшествий с судами, что иллюстрируется рисунком 1. На рисунке 1 показано, что, в то время как 18,7% зарегистрированных судов в SC были оборудованы СОД, на них пришлось 46,9% случаев аварий и аварийных происшествий с судами, что вызвано отказами СОД. Следует отметить, что за рассматриваемый период времени не было зафиксировано ни одной аварии или аварийного происшествия с судами, связанные с отказами паротурбинной установки (ПТУ).

Таблица 3. Причины отказов главных судовых двигателей внутреннего сгорания (СДВС) всех типов, по данным SC

Отказы узлов и деталей СДВС	Количество отказов	Относительное количество отказов, %
Газотурбокомпрессоры	84	36,2
Коленчатые валы, шатуны	23	9,9
Втулки цилиндров	17	7,3
Остов и блоки цилиндров, анкерные связи	17	7,3
Шейки валов, подшипники	15	6,5
Топливные насосы, передачи	12	5,2
Распределительные валы, кулачки и кулачковые муфты	10	4,3
Поршни, штоки поршней	9	3,9
Отказы других конструктивных узлов	45	19,4
Всего	232	100

Таблица 4. Причины отказов главных СОД по данным SC

Отказы узлов и деталей СДВС	Количество от- казов	Относительное количество отказов, %
Газотурбокомпрессоры	21	25,6
Коленчатые валы, шатуны	21	25,6
Распределительные валы, кулачки и кулачковые муфты	8	9,8
Шейки валов, подшипники	6	7,3
Топливные насосы, передачи	5	6,1
Отказы других конструктивных узлов	21	25,6
Всего	82	100

Таблица 5. Причины отказов двухтактных малооборотных дизелей (МОД), по данным LR

Отказы узлов и деталей СДВС	Относительное количество отка- зов, %
Газотурбокомпрессоры	18,0
Поршни	10,0
Втулки цилиндров	9,0
Коленчатые валы	8,0
Шатуны	7,0
Штоки поршня	4,0
Отказы других конструктивных узлов	44,0
Beero	100

Таблица 6. Причины отказов двухтактных МОД, по данным SC

Отказы узлов и деталей СДВС	Относительное количе- ство отказов, %
Газотурбокомпрессоры	42,6
Поршни	4,7
Втулки цилиндров	10,1
Анкерные связи	11,5
Подшипники – рамовые, механизма движения	6,1
Штоки поршня	4,7
Отказы других конструктивных узлов	20,3
Bcero	100

Результаты расследований причин отказов двухтактных МОД выполненные LR и SC показывают, что основной причиной отказов главных двухтактных МОД являются неисправности газотурбоком-

прессоров (ГТК), которые составляют, соответственно 18,0% и 42,6%, причём, большинство причин отказов совпадает. По данным LR, ГТК возглавляют перечень из 43 возможных категорий неисправностей и являются одной из основных причин отказов главных МОД. Количество неисправностей ГТК, приведших к отказам СДВС, по отношению к общему числу отказов по двигателю, составило: 3% для высокооборотных дизелей (ВОД), 9% для СОД и 18% для МОД. По данным аналогичных исследований SC: 25,6% для СОД, 42,6% для МОД.

Вероятность возникновения отказов ГТК, установленных на МОД, по отношению к общему числу отказов по двигателю в 2 раза выше чем у СОД и в 6 раз выше, чем у ВОД. Причиной этому являются более тяжёлые условия работы ГТК двухтактных дизелей, в процессе эксплуатации, зависящие от ряда определяющих факторов. Основными являются высоко и низкочастотная вибрация. Высокочастотная вибрация вызывается разбалансировкой ротора вследствие отложений на рабочих лопатках и диске турбины, а низкочастотная неустойчивыми режимами работы компрессора - помпажом. Чаще всего отказы ГТК были вызваны повреждениями ротора (~15,0%), сопловых лопаток турбины (~9,5%), рабочих лопаток турбины (~9,0%) и подшипников скольжения со стороны турбины (~9,5%) и компрессора (~9,0%).

СПИСОК ЛИТЕРАТУРЫ

- 1. Banisoleiman K., Rattenbury N. Reliability trends, operating issues and acceptance criteria related to exhaust gas turbochargers used in the marine industry// A classification society view by Lloyd's Register, marine services.- London, 2008.- September. 21-39 p.p.
- 2. Main engine damage update (1998-2004)// The Swedish Club's highlights.- Gotenborg, Sweden, 2005.- September. 8p.