УДК 624.011
 ЩОДО РОЗРАХУНКУ ЕЛЕМЕНТІВ З КЛЕЄНОЇ ДЕРЕВИНИ, ЩО ПРАЦЮЮТЬ НА СТИСК ЗІ ЗГИНОМ

К.т.н., професор Кліменко В.З., к.т.н. Михайловський Д.В., ас. Коваленко М.С.
Київський національний університет будівництва і архітектури (м. Київ)

Клеєна деревина, - відносно новий конструктивний матеріал, що акумулює в собі позитивні властивості деревини цільної. З впровадженням клеєної деревини з’явився цілий ряд нових великопрольотних конструкцій, як то: ферми, арки, трикутні розпірні системи тощо. Основні несучі елементи цих конструкцій працюють на стиск зі згином. Розрахунок таких елементів виконується за формулою складного опору, в якій при визначенні розрахункового згинального моменту в деформованому стані (рис. 1, a) застосовується методика, що була розроблена ще в тридцяті роки минулого сторіччя проф. Заврієвим К.С. [1]. Повний згинальний момент в цій теорії визначається за формулою:

$$
\begin{equation*}
M_{\ddot{A}}=M_{q}+N \cdot f_{\ddot{A}} \tag{1}
\end{equation*}
$$

Ейлера в елементі, що працює тільки на стиск, N - розрахункове повздовжнє зусилля в елементі.

a)

Рис. 1. Деформована схема стиснуто-згинальних стержнів
Існуюча методика адекватно відображає фізичне явище в стиснутозгинних елементах з гнучкістю в площині згину $\lambda \geq 55$, коли коефіцієнт повздовжнього згину знаходиться на параболі Ейлера на графіку $\lambda-\varphi$ коли $\varphi=3000 / \lambda^{2}<1$.

Для елементів з $\lambda<55$ коефіцієнт знаходиться на емпіричній кривій Енгессера-Кармана і не буває більше одиниці. В діапазоні гнучкостей елементів $20 \leq \lambda \leq 55$, що звичайні для сучасних стиснуто-згинних елементів з клеєної деревини. Теорія крайових напружень перестає адекватно відображати фізичне явище. Добрий результат розрахунку подібних елементів за формулою
$M_{\ddot{A}}=M / \xi$, в якій коефіцієнт ξ непрямо враховує деформовану схему досягається завдяки математичній структурі формули $\xi=1-N /\left(\varphi \cdot A \cdot R_{c}\right)$.

В ній суттєво нівелюється значення коефіцієнту φ в широкому діапазоні його величин. Ця обставина відмічена в [2, 3] і зроблено висновок, що випадкове співпадіння розрахунків для елементів з $\lambda \leq 55$ не може бути обгрунтуванням методики розрахунку. Для таких стиснуто-згинних елементів коефіцієнт повздовжнього згину становиться більше одиниці, що протиречіть природі стійкості стиснутого елементу. В [4] викладені пропозиції щодо заміни існуючої методики розрахунку стиснуто-згинних елементів.

Слід зазначити, що в $30-\mathrm{x}$ роках минулого сторіччя вже існувало точне рішення задачі визначення дійсного згинального моменту в стиснуто-згинних елементах [5], отримане в результаті інтегрування диференційного рівняння кривизни елемента в деформованому стані.

Розрахункові формули для визначення згинального моменту та прогину в точному методі мають наступний вигляд:

$$
\begin{align*}
& \grave{I}_{\delta \dot{\varphi} c \delta}^{\delta}=M_{\grave{O}}=\frac{q \cdot l^{2}}{u^{2}} \cdot\left(\frac{1}{\cos \frac{u}{2}}-1\right), \tag{2}\\
& f_{\tilde{A}}=\frac{q \cdot l^{4}}{E \cdot I \cdot u^{4}} \cdot\left(\frac{1}{\cos \frac{u}{2}}-1-\frac{u^{2}}{8}\right), \tag{3}
\end{align*}
$$

де параметр $u=\sqrt{\frac{N}{E \cdot I}} \cdot l$.
В цих формулах, як і в існуючій методиці завуальовано кількісне визначення складових згинального моменту $M_{\text {д }}$ і прогину $f_{\text {д }}$ від впливу повздовжнього зусилля N на кривизну елемента від поперечного навантаження q. Це погляд на розрахункові формули (2) i (3) авторів з методологічної позиції, як викладачів вищої школи. Формули (2) i (3) не дозволяють виконувати кількісно чисельний аналіз напружено-деформованому стану в порівнянні розрахункових схем a, б на рис. 1 .

Звісно, для інженерних розрахунків краще користуватись точною методикою розрахунку стиснуто-згинних елементів. Існуюча методика, до якої ϵ серйозна методологічна претензія в зв’язку з появою коефіцієнта $\varphi \gg 1$, для елементів з $\lambda \leq 55$ дає зайвий необов’язковий запас міцності, порівняно 3 точною методикою.

Стиснуто-згинні елементи складають широкий клас будівельних конструкцій. В навчальному процесі цікавим виявляється виконання студентами наукових досліджень в рамках курсового та дипломного проектування 3 чисельним аналізом таких елементів. Для отримання необхідного для цього математичного апарату розроблена спеціальна методика. Суть її в наступному.

3 опору матеріалів відомо, що прогин балки y (рис. 1, б) в стані статичної рівноваги елементу визначається з диференційного рівняння:

$$
\begin{equation*}
d^{2} y / d x^{2}=-M_{x} / E I \tag{4}
\end{equation*}
$$

Таким чином рівняння деформованої осі стержня визначається як другий інтеграл виразу рівняння згинального моменту по x, поділеному на $E I$ з зворотнім знаком.

$$
\begin{equation*}
y_{(x)}=-\iint \frac{M(x)}{E I} d x^{2} . \tag{5}
\end{equation*}
$$

В загальному випадку рівняння згинального моменту з урахуванням деформованої схеми набуває вигляду:

$$
\begin{equation*}
M_{(x)}=\frac{q L}{2} \cdot x-\frac{q \cdot x^{2}}{2}+N \cdot y_{(x)} . \tag{6}
\end{equation*}
$$

Як бачимо 3 формули (6), для вирішення диференційного рівняння (4) слід попередньо задатись рівнянням кривої деформованої осі. В [6, 7] запропоновано в якості кривої деформованої осі застосовувати тригонометричний ряд Фур'є (7), що повинен задовольняти крайовим умовам.

$$
\begin{equation*}
y_{(x)}=f_{1} \sin \pi x / l+f_{2} \sin 2 \pi x / l+f_{3} \sin 3 \pi x / l+\ldots \tag{7}
\end{equation*}
$$

Враховуючи той факт, що при симетричному навантаженні перший член ряду дає точність, рівну $95-97 \%$, можна обмежитися тільки ним.

Підставивши рівняння (7) в (6) і двічі проінтегрувавши (5), одержуємо рівняння деформованої осі елементу в загальному вигляді:

$$
\begin{equation*}
y_{(x)}=-\frac{1}{E I}\left(\frac{q \cdot L}{2} \cdot \frac{x^{3}}{6}-\frac{q}{2} \cdot \frac{x^{4}}{12}-N \cdot f_{1} \cdot \frac{L^{2}}{\pi^{2}} \cdot \sin \left(\frac{\pi}{L} x\right)+C_{1} \cdot x+C_{2}\right) \tag{8}
\end{equation*}
$$

Підставивши в рівняння (8) крайові умови для розрахункової схеми (рис. 1) знаходимо постійні інтегрування. Остаточно рівняння деформованої осі елементу набуває вигляду:

$$
\begin{equation*}
y_{(x)}=-\frac{q \cdot L \cdot x^{3}}{12 \cdot E I}+\frac{q \cdot x^{4}}{24 \cdot E I}+\frac{q \cdot L^{3}}{24 \cdot E I} \cdot x+\frac{N}{E I} \cdot \frac{L^{2}}{\pi^{2}} \cdot\left(\frac{-\frac{5 \cdot q \cdot L^{4}}{384}}{N \cdot \frac{L^{2}}{\pi^{2}}-E I}\right) \cdot \sin \left(\frac{\pi}{L} x\right) \tag{9}
\end{equation*}
$$

3 (9) розрахунковий прогин в середині прольоту елемента дорівнює

$$
\begin{equation*}
y=\frac{5 \cdot q \cdot L^{4}}{384 \cdot E I}+\frac{N}{E I} \cdot \frac{L^{2}}{\pi^{2}} \cdot\left(\frac{-\frac{5 \cdot q \cdot L^{4}}{384}}{N \cdot \frac{L^{2}}{\pi^{2}}-E I}\right) \tag{10}
\end{equation*}
$$

Підставивши рівняння (9) в (6) отримаємо рівняння для визначення дійсного згинального моменту в будь якому перерізі по довжині стиснутозгинного елементу:

$$
\begin{align*}
& M_{(x)}=\frac{q L}{2} \cdot x-\frac{q}{2} x^{2}-\frac{N \cdot q \cdot L \cdot x^{3}}{12 \cdot E I}+\frac{N \cdot q \cdot x^{4}}{24 \cdot E I}+\frac{N \cdot q \cdot L^{3}}{24 \cdot E I} \cdot x+ \\
& +\frac{N^{2}}{E I} \cdot \frac{L^{2}}{\pi^{2}} \cdot\left(\frac{-\frac{5 \cdot q \cdot L^{4}}{384}}{N \cdot \frac{L^{2}}{\pi^{2}}-E I}\right) \cdot \sin \left(\frac{\pi}{L} x\right) \tag{11}
\end{align*}
$$

Максимальний розрахунковий момент знаходиться в середині прольоту елемента. Підставивши потрібну координату перерізу і виконавши певні математичні перетворення одержуємо формулу для визначення дійсного розрахункового моменту в стиснуто-згинному елементі з урахуванням деформованої схеми:

$$
\begin{equation*}
M_{\check{\partial} \varphi \bar{\delta} \delta}=\frac{q \cdot L^{2}}{8}+\frac{5 \cdot N \cdot q \cdot L^{4}}{384 \cdot E I}+\frac{N^{2}}{E I} \cdot \frac{L^{2}}{\pi^{2}} \cdot\left(\frac{-\frac{5 \cdot q \cdot L^{4}}{384}}{N \cdot \frac{L^{2}}{\pi^{2}}-E I}\right) \tag{12}
\end{equation*}
$$

Для спрощення розрахункових формул (10), (12) замінюємо складові рівняння для визначення згинального моменту та прогину в балці на двох опорах під дією тільки рівномірно розподіленого навантаження та параметр $U(13)$. Остаточно одержуємо запис для визначення розрахункового згинального моменту (14) та прогину (15).

$$
\begin{array}{r}
M_{q}=\frac{q \cdot L^{2}}{8} ; f_{q}=\frac{5 \cdot q \cdot L^{4}}{384 \cdot E I} ; U=N \cdot \frac{L^{2}}{\pi^{2}} \\
M_{\partial i c \delta}=M_{q}+N \cdot f_{q}+N \cdot U \cdot\left(\frac{-f_{q}}{U-E I}\right) \\
y=f_{q}+U \cdot\left(\frac{-f_{q}}{U-E I}\right) \tag{15}
\end{array}
$$

Одержані формули (14), (15) дещо складніші за формули наведені в СНиП ІІ-25-80 [8], але вони більш точно передають фізичне явище, яке відбувається в елементах, що працюють на стиск зі згином. 3 методологічної точки зору запропонована методика краща з позиції викладачів вищої школи.

Для порівняння запропонованої методики визначення розрахункового згинального моменту з іншими були проведено чисельні дослідження, що стосувались визначенню розрахункового згинального моменту та крайового напруження в панелях верхніх поясів ферм. Для можливості співставлення результатів загальна геометрія ферм і навантаження прийняті однаковими. Змінювався лише тип решітки ферм, а відповідно довжини елементів верхнього поясу. Елементам задавались фізико-механічні характеристики згідно СНиП ІІ-25-80: розрахунковий опір на згин $-R_{32}=R_{c}=15$ МПа (для деревини 2-го сорту); модуль пружності вздовж волокон $E=10000$ МПа.

Порівнювались чотири методики визначення розрахункового згинального моменту з урахуванням деформованої осі елементів верхнього поясу:
I. Методика СНиП II-25-80: $M_{\text {ді } ¢ \delta}=M_{\ddot{A}}=M_{q} / \xi$,
II. Наближена методика $M_{\text {б } \overline{c \delta}}=M_{q}+N \cdot f_{q}$,

де f_{q} - прогин елементу від дії рівномірно розподіленого поперечного навантаження.
III. Точна методика - формула (2),
IV. Запропонована методика - формула (14).

Виявлено повну збіжність результатів за точною методикою III $з$ запропонованою - IV. Результати чисельних досліджень представлено у вигляді графіку залежності додаткового згинального моменту $M_{\text {дод }}$ від прольоту панелі верхнього поясу (рис. 2). Додатковий момент $M_{\text {дод }}$ визначався як різниця розрахункового моменту $M_{\text {розр }}$ та моменту тільки від поперечного рівномірно розподіленого навантаження без врахування деформованої схеми M_{q}.

Рис. 2. Графік залежності додаткового згинального моменту від прольоту панелі верхнього поясу

3 графіку чітко простежується суттєве збільшення додаткового згинального моменту зі збільшенням довжини елементів. Також можна пробачити, що непогана збіжність всіх чотирьох представлених методик відбувається лише при незначних прольотах (до $2-\mathrm{x}$ метрів), а відповідно і гнучкостях $\lambda \geq 55$. Зі збільшенням прольоту стиснуто-зігнутого елементу різниця між наближеною методикою СНиП ІІ-25-80 та іншими, більш точними методиками, стає все більшою. Це ще раз підвереджує думку про те, що не завжди формальний перенос вдалої методики розрахунку елементів конструкцій з суцільної деревини на елементи конструкцій з клеєної деревини без ретельного обгрунтування стає еволюційним кроком [9]. А саме це відбулось з методикою розрахунку крупнопанельних конструкцій з клеєної деревини елементи яких працюють на стиск зі згином.

