Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepid: Texniuni Hayku

UDC 004.056

Samoilenko D.M.
Admiral Makarov National University of Shipbuilding

Sivko O.E.
Admiral Makarov National University of Shipbuilding

HTTP DATA CIPHERING ALGORITHM

Purpose. Modern tends of IT systems evolution are to fill all spheres of human life. Most of all, for
connection and data transfer the HTTP protocol is used. Due to its oldness many modern problems
find no simple solutions. It is possible to encounter such problems as insecurity of data transferring
via POST method or troubles with sharing private data by e-mail. But it is possible to secure pri-
vate data by using algorithm which is described. Methods. We used Shannon's principle by adding
crypto “salt” to the source text and extending it to given length to prevent spoofing and substitution,
DES-like algorithm (permutation — password applying — permutation) and feedback by ciphered text
to give extra strength to the algorithm. Results. As the result an algorithm of HTTP data securing
was described. PHP code fragments of functions which implement it were listed. Effectiveness of
the method was proved by an algorithm tests. Discussion. Algorithm proposed in the work allows to
securely transfer data via HT'TP protocol. It suits for small pieces of data like passwords or personal
data and should not be used to encrypt large sequences of text or other type of data.

Key words: HTTP protocol, secure information, data protection, program code, cryptography.

Introduction. Modern tends of IT systems evolu-
tion are to fill all spheres of human life. In some cases
it dealt with interconnection of formally unrelated
systems working with different encodings, protocols,
algorithms, languages etc. Most of all, for connection
and data transfer the HTTP protocol is used. Due to
its oldness many modern problems find no simple
solutions.

For example, the task is to send personal email
proposition which should include some private data
in a link inside the message. But email protocols
allow no invisible POST data transfer. Only way is to
include private data in GET parameters visible for all
behind one’s back. Another problem arises when user
sends their private data via some e-form. Although
POST method is available, data transferred could be
spied with help of traffic sniffers.

Idea of the HTTP secure transferring algo-
rithm. Such tasks as sending personal data by e-mails
or acquiring passwords by Internet communication
should be realized with data encryption. But there is
another problem: symbols on client and server may
have different encoding whereas encryption applies
for symbol codes not for the symbols directly. More-
over, for a small data units like password or birth-
date there are no necessity for complex ciphering.
Follow Shannon’s principles of secure communica-

186 Tom 29 (68) U.1N2 32018

tion we could easy use crypto “salt” with entropy not
less than whole data. When entropy added equal or
greater than data entropy we formally take a case sim-
ilar to one-time pad ciphering that cannot be cracked.

This article is for develop a ciphering algorithm
which operates with symbols directly (not with its
codes) designed for small data units transfer via
HTTP protocol especially for GET method.

In work [1] an idea for such ciphering was pro-
posed. The base of the idea is involute transform in
symbol set (alphabet). Mean c to be a ciphered sym-
bol, ¢ and p — text and password symbols respectively,
the transform looks like

c=t+p, €))

where overline means additive inverse in alpha-
bet. In aforementioned work involute property of
transform was proved, so deciphering use the same
procedure (add password symbol and inverse):

t=c+p.)

Program code realization. Practical realization
of data ciphering will be shown using PHP language
as a popular tool for HTTP communications. For
transform realization, it is necessary to declare an

alphabet as a set of symbols allowed in channel
$alph = “abcdefgh...ABCDEFGH...0123...”.

Inpopmaruka, 00uyKCIIOBAJIbHA TEXHiKa Ta aBTOMAaTH3aLisl

Usage of predefined symbols instead of built-in
symbols tables, first, prevents discordance in differ-
ent tables (on client and server side) and, second,
allows additional control for unauthorized interven-
tion in data.

Alphabet length will play role of calculation modulo

$mod = strlen($alph).

For calculation acceleration, we will use prede-
fined array of symbols numbers

$sno = array (“a” =>0, “b”=>1,...).

Symbols numbers could be calculated at runtime
calling corresponding function, but described way
has advantage for expended time.

If $¢ variable used for cipher symbol, $t — for text
(initial data) symbol, $p —for password and $d — for
decrypted symbol, (1) and (2) transforms could be
programmed as.

$c = S$alph[$mod-($sno[$t]
$ mod-1];

$d = Salph[$mod-($sno[$c] + $sno[$p])%$-
mod-1].

For better invulnerability to impersonate, substitu-
tion and spoofing attack [3—4] the entropy of joint set
MES (message — encryption — source) should be min-
imal. Therefore, ciphered blocks should be aligned —
they must have the same size despite to different size
of initial blocks. However, the data about initial block
length should be preserved in cipher block.

Combine statements about additional entropy,
crypto “salt” and block alignment we can describe the
first stage of data ciphering:

Length of initial data block calculates and includes
in it.

Random symbols adds to initial block to extend it
for predetermined size.

We propose to preserve initial data block length by
including at the begin of data the symbol which order in
alphabet is equal to the length. Since symbol set includes

+ $sno[$p])%

at least small, capital letters and digits its length quite

enough for blocks with 70 symbols. As a rule, protected

HTTP data blocks has significantly shorter length:
$text = “secure_text”; /HTTP data example;

$len = strlen ($text); //length of data;

$text = $alph [$len].$text; //length as a symbol in
first position.

Next, we propose a schema, similar (in idea) to
DES algorithm: A) initial permutation; B) password
appliance; C) final permutation. Permutation tables
from DES standard could be used for 64-symbol
blocks. For smaller blocks and for simpler demon-
stration we will use 32-symbol version built on DES
ideas [4].

$IP = array (30, 26, 22, ...11, 7, 3);

$IP1 = array (24, 8, 32, ...1, 25, 9);

$perm = 7,

For ($1=0; $i < 32; $i ++);

$perm. = $text[$IP[$i]-1]; /-1 since origin 0.

Password appliance is produced in cipher-feed-
back mode. Since data block was expanded with
“salt” there is not necessary to provide other non-lin-
ear transformations. This statement will be proved by
examples analysis further. Cipher-feedback means
that after password symbols finishing, previous sym-
bols of cipher are used as password:

$pass = “password”;

$plen = strlen ($pass);

$ciph = «;

for ($i=0;8i <32; $i ++){

$t = $perm [$i];

$p = ($i < $plen)?$pass [$i]: $ciph [$i-Splen]

//password or cipher

$ciph. = $alph [$mod-($sno [$t] + $sno [$p])%
$mod-1];

}

Finally, the inverse IP' permutation applied
to cipher text. Codes are the same to IP applica-

Table 1

Algorithm tests

text: _secure_text

password: p

Y Hb O b FS 08 mc9¢eG5ROpTgfx5SR1zVY9 r 3

6 0O0pr5SyEQe
jtqTQTDoOo t
SDvghlyl?2

mbfYN O jw

tqr8zRxWjgrmHHEvVbbyJRTm
0rTT4Q7 dbbWDXN9n9s8GI1A
iwgkKLI IeOazQZGh74k2Raw

S gY¥YQal2c6e21RO4cqf0ZxF38

187

Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepid: Texniuni Hayku

tion shown above, only name of array changes for
$perml.

Algorithm results test. For ciphering algorithm
testing, first, produce many ciphers for the same ini-
tial text and password. Second, repeat the test for the
data consists of the same symbols.

Tabulations in Tab.1 allows better visual analysis
of cipher outcome: there are no vertical lines with the
same symbol (analogue for fixed bits). Therefore, in
practice algorithm shows appropriate results.

Second test (with similar symbol text) shows
appropriate results too. There are no enlarged prob-
ability for basic symbol or it prevailing appearance
in cipher-text.

Due to involute transform and mutually inverse
permutations, deciphering algorithm is the same to
ciphering, but cipher text should be used instead of
initial data. In deciphered result first symbol order
(in alphabet) tells us how much symbols are inform-
ative.

Conclusions. Adaptation of bitwise methods,
crypto- and stegoalgorithms, and information theory
theorems for symbol operations allows creating an
algorithm for small-block data ciphering typical in
network protocol like HTTP. Algorithm use no sym-
bol code tables and shows no fixed symbols in sub-
sequent operations. It could be useful in protected
data transfer via open network.

References:

1. Cawmoiinenko [I.M. KommiekcHa cucrtema 3axucTy iH(opmaliitHoro pecypcy. IHdopmariiiina Oe3meka.
2013. C. 147-151.

2. Cawmoiinenxo /I.M. Web-opientoBana cucrema mmdpysanas URI napamerpis. [Ipobiemu kxibepOesnexu
iHopmManiiHuX Ta TenekoMyHikaniiinux cucrem. 2017. C. 196-198.

3. PeiD.Y. Authentication Schemes. Singapore: Institute for Mathematical Sciences. 2001. 36 p. URL: www.
ims.nus.edu.sg/Programs/coding/files/dypei.ps (nara 3Bepuenns: 28.03.2018)

4. Simmons G.J. Authentication Theory / Coding Theory. Advances in Cryptology. 1985. P. 411-431.

5. DES supplementary material / Wikipedia, the free encyclopedia. URL: https://en.wikipedia.org/wiki/
DES supplementary material (nata 3sepHenus: 28.03.2018)

6. FIPS Publication 46-3, Data Encryption Standard (DES). URL: https:/csrc.nist.gov/csre/media/
publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf (nata 3BeprenHns: 28.03.2018)

AJITOPUTM HIM®PYBAHHSA JAHUX HTTP-ITIPOTOKOJY

Mema. Cyuacni meuii esomoyii IT-cucmem cnpusiroms 3ano8HeHHIO 6CiX cghep r00cvKo2o scummsi. s 6cmanos-
JIeHHs1 3’ €0HaHb ma nepedavi Oanux Hauyacmiue suxopucmogyemocs npomokon HTTP. Yepes tioco sacmapinicmo
Oaeamo HOBUX NpobIeM He 3HAXOOSIMb NPOCIUX pitersb. Mooicna cmukHymucs: i3 npooneMamu Ha 3pasox He3axuuje-
Hocmi nepedaui danux 3a donomoeoro POST abo i3 npobnemamu nio yac nepedadi 3aXuyerux OaHUX e1eKmMpPOHHOK
ROWMOI0. Ane € MoXHCIUGICIb 3aXUCIUMU RPUBAIHI £1Hi, SKWO GUKOpUCmumu onucanuti areopumm. Memoou. Buxo-
pucmarno npuryun Lllenona wiisaxom 000a8aH s KpURmMoSpagpiuHoi «comiy 00 NOYAMKOBO20 MEKCHY Md POUUPEHHS.
11020 O 3anobieanHs nepecmanoskam i cny@iney, DES-nodionuii aneopumm (nepecmanosra — BUKOPUCHIAHHS NAPOTIs
— NEPECMAaHOBKA) Ma 360POMHULL 36 SI30K 30 6 3AUUDPOBAHUM MEKCIMOM 13 MEMOI0 HAOAHHSL 000AMKOB0I CIMILIKOCI
aneopummy. Pesynomamu. Onucano npukiaoHull aneopumm wugpyeants OarUX, Wo nepedaromvcs 3d NPOmMOoKOIOM
HTTP. Hasedeno gpaemenmu Kooy ¢hynxyiti moeoro PHP. Eghexmugricms memoouku 008e0eHo uiisaxom mecmy aneo-
pummy. Juckycis. 3anponorosanuil y pooomi aneopumm 003605€ 2apanmyéamu Oe3neyry nepeoady OaHux 3a 00no-
moeoto npomoxony HTTP. Bir nioxooumse 0 pooomiu 3 HeGeIUKUMU 00 eEMaMiL OaHUX, SIK-0M NAPO, NEPCOHATLHI OaHI,
ma me modice Oy GUKOPUCIAHULL 07151 WUGDPYBAHHSL BETIUKUX MEKCIOBUX NOCTIO0BHOCHEN ADO0 JIC THUUX MUNIE OAHLX.

Kniouoei cnosa: npomoxon HTTP, 3axuwena inghopmayis, 3axucm 0anux, npoepamuull Koo, Kpunmozpagis.

AJITOPUTM HIUD®POBAHUSA JAHHBIX HTTP-ITPOTOKOJIA

Lenv. Cospemennvle meuenus s6omoyuu UT-cucmem cnocobcmeyrom 3anoiiHeHuto 6cex cgep uenogeueckou
olcuzHu. /s yemanosnenus coeounenuti u nepeoayi OanHbix yawe ece2o ucnonvsyemes npomokon HITP. Bcneo-
cmeue e20 yCmapenocmu MHo2ue Ho8ble Npoodaembl He HAX00sim NPOCmulX peuteruil. ModjicHO CmoaKHymvcs ¢ npo-
Onemamu 6pode HezawuujeHHocmuy nepedayu 0auHvlx ¢ nomowpro POST unu co croocnHocmamu npu nepedaue
3auUUEHHbIX OaHHBIX N0 IeKMPOHHOU noume. Ho ecmb 603MOMCHOCHb 3aWumums 4acmuvle OaHHble, UCHONb-
3ys onucannvii aneopumm. Memoowl. Hcnonvzosan npunyun Lllennona nymem 0obasnenus Kpunmozpagpuyecror
«COMUY K UCXOOHOMY MEKCNTY U pacuiuperue e2o 0Jis npedomepaweHus nepecmanosok u cnygunea, DES-oopasubiii
aneopumm (nepecmano6xa — npumMeHeHue napoJisa — NepecmaHosKa) u oélgamna;z CBA3b NO Yice 3aUUPPOBAHHOMY
mexcmy 0151 NPUOAHUSL AN2OPUMMY OONOTHUMETbHOU yemotiuueocmu. Pezynomamor. Onucan npuxiaouoil anzo-
pumm wudposanust 0anuvlx, nepeoasaemvix no npomoxony HTTP. [lpusedenvt gppacmenmol kooa gynkyuii na
szvike PHP. D¢hgpexmuernocmov memoouxu dokazana nymem mecma aneopumma. Juckyccus. [Ipeonosicennviil 6
pabome anzopumm no3goisiem obecnedums beonacuyio nepedady oarnmwix no npomoxony HTTP. On nooxooum ons
pabomol ¢ HeboOMLUUMU 00BbEMAMU OAHHBIX, HANPUMED, NAPOTIAMU, NEPCOHATIbHBIMU OAHHBIMU, U He MOdcem Oblnb
UCNOMB306aH 0151 WUDPOBAHUS DOTLULUX NEKCOBHIX NOCTE008AMETLHOCEL UMY OPYUX IMUNOE OAHHBIX.

Knrwoueswvie cnosa: npomoxon HTTP, 3awuwennas ungopmayus, 3auuma OaHHbIX, NPOSPAMMHBIN KOO,
Kpunmoepagusi.

188 Tom 29 (68) U. 1 N2 32018

