РАДИОФИЗИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ КОМПОНЕНТНОГО СОСТАВА МЕЛКОДИСПЕРСНЫХ СМЕСЕЙ. ЧАСТЬ 2

О.Н. Сухоручко, С.И. Хоменко, А.П. Корецкий (Институт радиофизики и электроники НАН Украины)

Приведены результаты анализа радиофизических методов и экспериментальные данные по использованию аппаратуры сантиметрового и миллиметрового диапазонов длин волн для определения процентного содержания компонент мелкодисперсных смесей на различных стадиях технологического процесса.

радиофизические методы, компонентный состав, мелкодисперсные смеси

В работе [1] были рассмотрены радиоволновые методы определения процентного содержания компонент при производстве цемента. Для магнитных измерений в качестве измерительных преобразователей использованы миниатюрные датчики Холла (ДХ) [2] из тонкопленочных полупроводниковых гетероструктур. Применен градиентометрический (астатический) способ включения двух максимально идентичных по электрическим параметрам ДХ с коэффициентом чувствительности 70 ÷ 150 мкВ/мТл при токе через датчик $I_h = 100$ мА, нелинейности менее 1% в полях до 1,5 Тл и термочувствительности менее 0,03%, что позволяет исключить термостабилизацию ДХ [3]. Градиентометрическое включение ДХ сводит к минимуму влияние однородного магнитного поля и магнитных помех, так как они взаимоисключаются за счет встречного включения первичных преобразователей с идентичными входными сигналами [4].

Основной измерительный ДХ располагается у образца, а опорный ДХ – в области однородного магнитного поля, невозмущенного образцом. Экспериментально было установлено, что зазор величиной (10 ÷ 20) мкм (толщина защитного покрытия герметиком) между поверхностью ДХ и исследуемого шликкера не вносит заметных погрешностей в результаты измерений. Для установки нуля при начальной калибровке схемы предусматривалась точная регулировка тока одного из двух высокостабильных источников, питавших датчик.

Для измерения концентрации Fe_2O_3 в шликкере был разработан стенд (рис. 1). В соленоид помещается кювета с внутренней перегородкой. С одной стороны заполнена Fe₂O₃, с другой – исследуемый шликкер. Посредством датчиков Холла замеряются напряжения с обеих сторон.

Так как в составе шликкера все компоненты, кроме Fe₂O₃ являются диамагнитными, то по изменению остаточной намагниченности можно судить о процентном содержании Fe₂O₃.

В стенде два блока питания: блок питания основной обмотки соленоида (БПС) и блок питания обмотки, компенсирующей магнитное поле Земли (БПКО). Напряжение с датчиков Холла замерялось вольти позволяло определить концентрацию ферромагнитного материала Fe₂O₃ в шликкере как

$$N = (U_2 / U_1)100\%, \qquad (1)$$

где N - процентное содержание Fe_2O_3 в шликкере, а U_2 и U_1 напряжения ДХ при заполнении кюветы исследуемой смесью и 100% заполнении Fe₂O₃ соответственно.

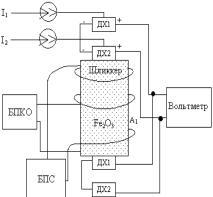


Рис. 1. Стенд для измерения концентрации Fe₂O₃ в шликкере

Для определения концентрации Fe₂O₃ в шликкере был разработан второй метод, основанный на изменении индуктивности измерительной катушки при внесении в ее каркас кюветы с измеряемым шликкером.

Схема установки приведена на рис. 2 (1 – кювета с исследуемым шликкером; 2 - катушка индуктивности; 3 - измеритель индуктивности). Перед началом измерений концентрации Fe₂O₃ определяется значение индуктивности катушки без кюветы L₀. Затем в каркас катушки помещается кювета с чистым Fe₂O₃ и определяется ее индуктивность L₁₀₀:

$$\Delta L_{100} = L_{100} - L_0 \,, \tag{2}$$

где ΔL_{100} – изменение индуктивности за счет введения кюветы с ферромагнитным наполнением (кюветы со 100%-ым Fe_2O_3).

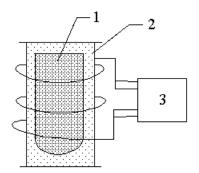


Рис. 2. Схема второго варианта установки для измерения концентрации Fe_2O_3 в шликкере:

Индуктивность катушки с ферромагнитной кюветой зависит линейно ОТ эффективной магнитной проницаемости материала кювете $(\Delta L_{100} = \mu L_0)$. Это позволяет определить концентрацию Fe_2O_3 по изменению ΔL, так как остальные компоненты шликкера являются диамагнетиками.

Помещая в кювету шликкер с измеряемой концентрацией Fe₂O₃, получаем L_x , затем находим ΔL_x . Процентное содержание Fe_2O_3 определяется как

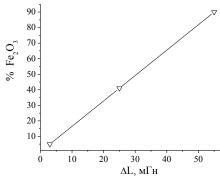


Рис. 3. Результаты измерения концентрации Fe₂O₃ в шликкере

$$N = \frac{\Delta L_x}{\Delta L_{100}} \cdot 100\% . \tag{3}$$

В качестве измерителя индуктивности был использован цифровой измеритель L, С класса 02. В основе его работы лежит мостовой метод с фазочувствительными детекторами уравновешивания. Питание моста осуществлялось генератора $F = 10^3 \Gamma \mu$.

В качестве катушки индуктивности применялась специально изготовленная катушка с индуктивностью без сердечника $L_0 = 4,137~\Gamma$. Результаты измерений иллюстрирует график рис. 3.

Анализ результатов измерений показывает, что существует принципиальная возможность определения концентрации магнитосодержащих в шликере материалов по изменению магнитной проницаемости сырья.

Выводы. Из результатов работы можно сделать вывод о применимости методов радиоэлектромагнитометрии для контроля исходных сырьевых материалов многокомпонентных смесей. Процесс контроля может быть как непрерывным и выборочным, информация может сниматься в аналоговом, цифровом или частотном виде с выводом на устройства обратной связи, регулирующем состав компонент в необходимых соотношениях.

ЛИТЕРАТУРА

- 1. Сухоручко О.Н., Луценко В.И., Корецкий А.П. Радиофизические методы определения компонентного состава мелкодисперсных смесей. Часть 1 // Системи обробки інформації. – X.: XУ ПС, 2006. – Bun. 3 (52). – C. 165-168.
- 2. Радиофизические методы определения компонентного состава смесей при производстве цемента / Касьяненко А.П., Сухоручко О.Н., Луценко В.И., Луценко И.В., Хоменко С.И. // Радиолокация, навигация, связь. VI Межд. *НТК.* – Воронеж: НИИ Связи, 25-27 апреля 2000. – Т. 3. – С. 1713-1720.
- 3. Антонов В.Г., Петров Л.М., Щелкин А.П. Средства измерений магнитных параметров материалов. – Л.: Энергоатомиздат, 1986. – 216 с.
- Пороговый измеритель остаточной намагниченности магнитомягких мате-4. риалов на основе холловских сенсоров / Игуменов В.Т. и др. // Микроэлектронные датчики в машиностроении: Тез. докл. Всес. НТК. - Ульяновск: НПК УЦМ, 13-15 ноября 1990. - С. 116.

Поступила 25.03.2006

Рецензент: доктор физико-математических наук, ст. научный сотрудник В.К. Иванов, Институт радиофизики и электроники НАН Украины, Харьков.