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UNCERTAINTY IN POLYNOMIAL CALIBRATION 
 

The article deals with formulation of measurement uncertainty for polynomial calibration functions. The 
uncertainty of values calculated from calibration function has contributions from classical influence 
quantities as well as uncertainty of calibrations parameters. The dependence between the calibrations 
parameters can be expressed by covariances. The covariance terms have to be taken into account in un-
certainty calculation. 
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Preface 

In metrological practice in the calibration of meas-
uring instruments linear behavior is usually assumed. 
Occasionally a linear function is not suitable and lin-
earization is not possible. In such cases a non-linear 
function is used to approximate the points measured. 

The selection of suitable non-linear function is not 
easy. In the ideal case the approximation function is 
similar to function derived from theory. This may be 
impossible in many cases. Then it is possible to use a 
polynomial function. The advantage of this approach is 
the possibility to use linear regression methods and 
simple mathematical apparatus. Additionally this 
mathematical apparatus is contained in standard soft-
ware for personal computers. 

Principle 
In the process of the calibration a relationship be-

tween values of the standard and the instrument is estab-
lished. If this relationship is not linear and there is no 
reason to prefer another function, a polynomial can be 
used to fit the data. 

The selection of the polynomial order is subjective. 
As guidance the value of the residual variance can be 
used. The residual scatter decreases with increasing 
polynomial order. In the case of non-linear relationship 
this decrease is steep at the beginning. If the variance 
changes negligibly on further increasing of the polyno-
mial order, this polynomial can be used for calibration 
evaluation. The decision, whether the consecutive vari-
ances are significantly different can be made by tests, 
e.g. Fisher F-test [5]. 

It should be noted that the stability of the parame-
ters of the polynomial is relatively low due to mutual 
correlation. The polynomial is used as an interpolation 
function only. The effort for interpretation of the values 
of parameters is not effective. A small change in the 
structure of experimental points may lead to completely 
different values of parameters, although the fit of the 
points is similar. 

Least squares method 
In this case the mathematical model is the equation: 
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In the calibration measurements it is usual to make 
more measurements than the number of function pa-
rameters. A minimum number of data points is usually 
recommended, corresponding to three times the number 
of adjusted parameters – for a linear function 6 points 
are recommended. For each measurement point an equa-
tion can be written, where the residual   is also given.  
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For n points n equations can be written. If they are 
written in a matrix form, we get: 
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Or in matrix notation 
εX.by  . 

In the least squares method such vector b is sought 

to yield minimum value of the term  2
i  [1, 3, 4]. 

Parameter vector calculated from the following equation 
fulfils this condition: 

  yXXXb T1T 
 . 

In parallel with the calculation of vector b it is 
possible to calculate the values of the elements of the 
covariance matrix: 
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 . 

The variance 2  can be estimated from the resid-
ual variance sR

2 according to the equation  
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where k is the number of adjusted parameters.  

 L. Vyskocil, M. Mariassy 



Системи обробки інформації, 2007, випуск 6 (64)                                                                         ISSN 1681-7710 

 24

The covariance matrix is symmetrical. In the main 
diagonal it contains the variances iis  of the individual 
parameters. The off-diagonal elements contain individual 
covariances ijs  between the parameters. The covariance 

matrix for a polynomial of the III order looks like this: 
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Uncertainty calculation 

If the mathematical model of the measurement of f 
is known, then the uncertainty can be calculated accord-
ing to the document [2] using the basic equation, 
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which is for practical reasons used in the form: 
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This equation is sometimes called law of uncer-
tainty propagation. The first term relates to diagonal 
elements of the covariance matrix, the second term to 
the off-diagonal ones. 

After application of the law of uncertainty propa-
gation to our mathematical model we get an equation 
applicable for calculation of the standard uncertainty.  
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This uncertainty relates to the value calculated 
from the regression function and has the character of 
type A uncertainty. Type B uncertainty can be obtained 
after evaluation of contributions of all influence quanti-
ties. These uncertainties are combined as follows  
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To yield combined standard uncertainty uc and af-
ter multiplication with coverage factor k we get ex-
panded uncertainty U, which is added to the measured 
value to yield the measurement result.  

cu.kU  . 
For coverage factor value k =2 is used usually. 

Example 
The procedure is best illustrated on an example. 

The data are taken from a real measurement, where the 
conductivity of a solution is calculated from measured 
conductance. For simplicity the conductance and con-
ductivity will be noted as x and y.  

In the first step a linear function was used for re-
gression. For the calculation of parameters the proce-
dure described above was used. The graph is not inter-
esting. The individual points lie almost exactly at the 

calibration line, see Fig. 1.  
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Fig. 1. Calibration line 

 
More information can be drawn from a graph 

where the residuals (differences between experimental 
and calculated values) are plotted against independent 
variable (Fig. 2, together wit expanded uncertainties). 
All deviations are at once easy to see, as the calibration 
function is projected into the x-axis.  
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Fig. 2. Dispersion of residuals around the straight line 

 
For calculation of uncertainty the above equations 

were used, which for a line give the formula: 

  2
B01i11

2
i00 us.x.2s.xsU  . 

It is clear from the graph that the residuals are not 
randomly distributed and the calibration function is not 
linear. Some points are even outside the limits of the 
expanded uncertainty. 

After that, a polynomial of the third order was 
used. The residuals graph is more illustrative (Fig. 3). 

 Residuals are evenly distributed around the re-
gression line (here shown as x-axis) and this functional 
dependence can be used for calibration. 
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Fig. 3. Dispersion of residuals around polynomial III 

 
The expanded uncertainty is also given in the 

graph.  It can be clearly seen that the uncertainty de-
pends on the structure of experimental data and it is not 
possible to claim the same uncertainty for the whole 
calibration interval.  

Finally, the intermediate data for the matrix calcu-
lation are given for those who want to reproduce the 
calculation.  

Summary 
Higher order polynomials can be used for calibra-

tion. The function should be regarded as a regression 
function and the parameters should not be given any 
physical meaning. Due to strong covariance between the 
parameters, it must be taken into account in calculation 
of uncertainty. Uncertainty from regression is of type A. 
In graphical display it is useful to depict the residuals 
instead of function values. 
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