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MODULAR OPTIMIZATION-MEMORY BASED ARTIFICIAL NEURAL NETWORK

In this article an architecture and learning algorithm for the modular neural network, where the hidden layer is
Jformed by a general regression and radial basis function neural networks, have been proposed. These networks are paral-
lel connected to the input layer and trained independently, following which the optimization with respect to the network
output accuracy is performed. Formed by neural network models based on memory and optimization, the proposed modu-
lar neural network provides a high accuracy both in early learning stages and when data set could grow in real time.
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Introduction

Nowadays artificial neural networks have become
widespread for solving problems of identification, emu-
lation, prediction and nonlinear system control under
uncertain conditions of both plant and environment fea-
tures. First of all, their efficiency is provided by univer-
sal approximating capabilities and ability to learn using
observations of the system inputs and outputs.

This situation is complicated when data comes
continuously in real time and it should be processed on-
line. It is obvious that in this case a conventional multi-
layer perceptron is not effective and as alternative a
radial basis function network (RBFN) can be used,
which is also a universal approximator [1-4]. Since the
input signal of RBFN linearly depends on adjustable
synaptic weights, its learning may be performed using
the least squares method both in batch and recurrent
modes. The recurrent least squares method, which is an
optimization second-order procedure, has a high speed
of convergence but requires a large amount of training
data for effective adjustment of RBFN.

A radial basis function network, like a lot of other
neural networks whose learning process is associated with
optimization of a priori set learning criterion, belongs to a
wide class of so-called “optimization-based neural net-
works”. The main drawback of such networks is defined
by a low learning accuracy with a small training set.

An effective alternative of the optimization-based
neural networks is so-called “memory-based neural
networks™ whose typical representative is a general re-
gression neural network (GRNN) proposed by D.F.
Specht [5]. The basis of this network is an idea of Par-
zen windows [6] and Nadaraya-Watson kernel estimates
[7-9]. Its learning comes to setting multidimensional
radial basis functions in the points where coordinates
are estimated by the plant input signals. Thereby, the
GRNN and similar networks are called “just-in-time
models” [4] and the learning principle — “neurons in
data points” [10]. Having the architecture similar to
RBFN, GRNN uses a completely different learning al-
gorithm providing a high accuracy in the early learning

stage. Problems can occur as the training set begins to
grow due to a necessity of an additional solution to the
subsidiary clustering problem.

It may be reasonable to develop a network which
combines the advantages of RBFN and GRNN and guaran-
tees a high accuracy in all learning stages in both batch and
real-time modes. We suppose that a proposed modular
general regression radial basis function network
(GRRBFN), where learning is simultaneously based on
optimization and memory, can meet these requirements.

GRRBFN architecture
The GRRBFN architecture is illustrated in fig. 1.
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Fig. 1. GRRBFN architecture

The input signal x(k) (x(k)eR", k=1,2,3... is
the current discrete time) is fed to the hidden layer
formed by GRNN and RBFN. Their output signals
yG (k) and yR (k) are fed to the output network layer

formed by an adaptive linear associator with the adjust-
able synaptic weights w and 1—w . The output network

signal y(k) is compared with the learning signal d(k)

(the output signal of the system) and as a result the learn-
ing error e(k) =d(k)—y(k) used for adjusting the output
layer is calculated. The neural networks in the hidden
layer are trained using the learning signal d(k) (GRNN)

and error X (k) =d(k) - y® (k) (RBFN).
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Batch-mode learning
Let assume a training set
x(1),d(1),x(2),d(2),...,x(N),d(N)
is given. The Gaussians with fixed width parameter o
are used as activation functions for the hidden layer.

It has been already noticed that learning of GRNN
turns into setting the Gaussian centers in points x(k),

k=1,2,3...,N. Thus, a network response to the random

signal x which does not belong to the training set is
calculated according to the following expression:
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For RBFN with h neurons in the hidden layer the
((h+1)x1) -vector of the synaptic weights are evaluated

using the least squares method
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1=1,2,3..,h; ¢ - (nxl) — vector of the centres of the

1 -th activation function in the RBFN hidden layer) and
a response to the signal x can be expressed as
The output layer of GRRBFN combines the

yR x)= w(}} (N)+ ng (N) exp(—"x(k) - 01"2/(202 ))

where

signals yG (k) and yR (k) as follows

y() = wN)y () + 1= w)N)Y* (),
so that the signal y(x) is unbiased and not worse than
yO (k) and y® (k).

Let us take into consideration a set of (Nx1)-

vectors
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and write the obvious proportion
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after that solving the differential equation o =0,
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It is not difficult to prove validity of the inequali-

ties
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Thus it follows that accuracy of the GRRBFN out-
put signal is not worse than accuracy of the GRNN and

RBFN output signals. The synaptic weight w(N) de-
fines a contribution of yG (k) to y(k), i.e. the prox-

imity of yG (k) and yR (k) to the training signal d(k) .

On-line mode learning

In order to operate in real-time mode the above-
mentioned procedures should be rewritten in recurrent
notation considering the appearance of new training
samples x(N+1),d(N+1).

For GRNN writing the expression (1) as follows

G
y~ (x) =NG(N)/DG(N),
it is quite easy to consider influence of new data

NG(N)+d(N+Dexp~x ~x(N+ D /(20

DG +exp(-[x - x(N+ D[ /207

The synaptic weights of RBFN can be refined us-
ing either recurrent least squares method

wR(N+1) = wR(N)+ P(N+1)
x(d(N )= wRT(N)o(N + 1))(p(N +1);

v (%)=

P(N)p(N + D)o (N +1)P(N)
1+  (N+)P(N)p(N +1)

or quite the effective and simple Kaczmarz-Widrow-
Hoff algorithm

P(N+1)=P(N)-

AN+ 1) - wRT (N)Q(N +1)
o+
For the weight coefficients of the output layer con-
sidering the additional error eP (k)= el (k)- el k),
the following expressions can be obtained

WR(N+1) =wR(N) +

N+1).
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R(N+1)eP(N+1)
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NN +1) =n(N) +(e? (N+1))%.
Taking into consideration these obvious relations
P (N) =d(N) - y* (N)—d(N) +y* (N) =y () - yR (N),

P(N+1) = yO (N+1)—yR(N+1),
the expression (2) may be rewritten
RON+1)( yO(N+1)— 1
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Conclusions and directions
of the future investigations

In this article the simple and effective modular
general regression radial basis function network, which
allows solving problems of identification, emulation and
prediction etc. under the considerable uncertainty of the
system, has been proposed. The network can be trained
in both batch and real-time modes.

It is supposed to apply the proposed neural model to
solving a practical problem of predicting the growth of
bacteria count in poultry which depends on temperature,
chemical properties of the environment and time. The
choice of the problem is grounded on the fact that the
process of growing is characterized by a small amount of
experimental data. It makes a usage of the standard
RBFN problematic since it requires a quite large amount
of training data for solving an approximation task.

Assuming that in real time this process could be
described by a growing learning set that in turn makes a
usage of single GRNN non-effective, the modular neu-
ral network model is formed by RBFN and GRNN
should solve the formulated task.

Also in the future it is assumed to apply the ob-
tained results to non-stationary plants, improve robust
properties of the algorithm, provide a possibility of ad-
justing architecture of the network hidden layer and
receptive fields of the radial basis functions, synthesize
a fuzzy-neural system based on optimization and mem-
ory simultaneously.
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IHocmynuna 6 peoxonnezuro 25.07.2008

Penensent: n-p texu. Hayk, npod. B.M. Mmomko, Hammo-
HaJIbHBIH a’spokocMudeckuil yausepcuteT «XAl», XapbKkos.

MoOYNbHASA UCKYCCTBEHHASA HEMPOHHASA CETb, OCHOBAHHASA HA NAMATU U ONTUMU3ALUU
JI.C. ABnuenxko, E.B. BogsHckuii

B cmamve npeonooicenvr apxumexmypa u ancopumm 06yueHus MOOYIbHOU HeUPOHHOU cemu, CKpblmblll C0 KOMOopotl 0opazo-
8an 0600WeHHOU pecpeccUOHHOU U PAOUATLHO-OA3UCHON HEUPOHHBLIMU CemaMU, NAPAIETbHO NOOKTIOYEHHBIMU KO 8X00SUeMY CIOK0 U
00yyaeMbIMU HEe3a8UCUMO Opy2 OM Opyea, d 8 BLIXOOHOM CI0e NPOU3BOOUMCSl ONMUMUBAYUS NO MOYHOCIU BbIX00A CeMU OMHOCUMETbHO
obyuarowezo cuenana. Ilpeonazaemas mooens, 00beOUHssL 6 cebe HelpoHHble Cemu, OCHOBAHHbIE HA NAMAMU U ONMUMU3AYUY, obecneyu-
6aem bICOKYIO MOYHOCHIb ANIROPUMMA KAK HA HAYATILHBIX SIMANax 00y4eHus, max u npu pocme 6s100pKu OAHHbIX 6 PeaibHOM BDEMEHU.
Knroueswvie cnosa: paouansno-oazucnas neuponnas cemos, 0000ujeHHAs peepecCUOHHAA HelPOHHAs CeMb, HeUPOHHA
cemb, OCHOBAHHAS HA ONMUMU3AYULU, HEUPOHHAS Cemb, OCHOBAHNAA HA NAMAMU, MOOYIbHAA HEUPOHHAS CeMb.

MOLYJIbHA WTYYHA HEMPOHHA MEPEXA, WO BA3YETbLCSA HA NAM’ATI TA ONTUMISALIIT
JI.C. ABnienko, €.B. boasHcbkuit

Y emammi 3anpononosani apximexmypa ma anzopumm Hag4aHHS MOOYIbHOL HEUPOHHOT MepPedIct, NPUXOBaHULL wap siKoi cghop-
MOBAHULL Y3A2AIbHEHOIO PeSPeciliHoi0 ma paoudnbHO-0a3UCHOI0 HEeUPOHHUMU MepedtCaMy, Wo NApanelbHO NiOKIOUeHi 00 8XIOH020
wapy ma HAaguaromvCs He3ANeHCHO OOHA 8I0 OOHOI, a y GUXIOHOMY wapi 8i00Y8aemMbCcsa ONMUMI3AYIA NO MOYHOCE BUXO0Y MePedxCi
BIOHOCHO HABYAbHO20 cueHany. [Ipononyema mooenb, NOEOHYIOUU Y COOI HEeUPOHHI Mepedci, 3ACHOB8AHI HA NaM ami ma onmumizayii,
3abe3neuye 8UCOKY MOYHICHb ATCOPUMMY K HA NOYATNKOBUX emanax HAGYaHHs, Max i 3 pocmom 6UOIPKU OaHUX Y PeanbHOMY YACL.

Knrouogi cnosa: paduanvro-6asucna HelponHas mepedicd, y3a2anbhena pecpeciling HellpoHHa mepedica, HeUpoHHa me-
pedica, 3aCHO8AHA HA ONMUMI3AYIT, HEIPOHHAS Mepedca, 3ACHO8ARA HA NAM M, MOOYIbHA HEUPOHHA MepediCa.
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