УДК-629.78(075.8)

Малий М.С., Рахматов М.О., Гребенкіна О.А., Кулабухов А.М.

Дніпровський національний університет ім. Олеся Гончара

ДАТЧИК ГОРИЗОНТУ КОСМІЧНОГО АПАРАТУ

Пропонується спосіб визначення кутової орієнтації космічного апарату по лінії горизонту планети відносно орбітальної системи координат, алгоритм кутової орієнтації космічного апарату в надир планети з використанням малогабаритного датчика горизонту.

Ключові слова: космічний апарат, датчик горизонту, кутова орієнтація у надир планети.

Предлагается способ определения угловой ориентации космического аппарата по линии горизонта планеты относительно орбитальной системы координат, алгоритм угловой ориентации космического аппарата в надир планеты с использованием малогабаритного датчика горизонта.

Ключевые слова: космический аппарат, датчик горизонта, угловая ориентация, ориентация в надир планеты.

A method for attitude determination of a spacecraft along the horizon line of the planet relative to the orbital coordinate system, the algorithm for the angular orientation of the spacecraft in the nadir of the planet using a small horizon sensor is proposed.

Key words: *spacecraft, horizon sensor, angular orientation, orientation to the nadir of the planet.*

Вступ

Практично всі космічні апарати потребують кутової орієнтації і стабілізації в просторі для рішення цільових задач. Систему, яка здійснює кутову орієнтацію космічного апарату (КА) відносно визначених орієнтирів називають системою кутової орієнтації (визначення кутового положення) і стабілізації (кутові розвороти і утримання відносно визначених орієнтирів) – СКОС.

Як джерело інформації для визначення кутової орієнтації сучасні КА використовують магнітометри, інфрачервона вертикаль, сонячні датчики, астродатчики, датчики кутових швидкостей. Датчики можуть використовувати як традиційні технології виготовлення, так і технології МЕМС (мікроелектромеханічні системи) – виготовлення електричної і механічної частини датчика у вигляді мікросхеми [1].

[©] Малий М.С., Рахматов М.О., Гребенкіна О.А., Кулабухов А.М., 2018

Як виконавчі органи стабілізації і орієнтації КА широко застосовуються двигуни-маховики (програмні розвороти і прецензійна стабілізація) і електромагніти (використовуються для гасіння початкових кутових швидкостей КА при відділенні від ракети носія і розвантаження двигунів-маховиків).

Алгоритми кутового керування при цьому вимагають значних розрахунків пов'язаних з переходом в різні системи координат з використанням інформації про навігаційні параметри супутника (інформація з апаратури супутникової навігації) і формування керуючих сигналів на виконавчі органи.

Датчики горизонту на КА практично не використовуються. В основному їх застосування обмежено авіаційною технікою з малим часом функціонування (в основному використовуються гіроскопічні датчики).

Також існують розробки з орієнтації безпілотних апаратів за зображенням відеокамери [2]. Основні складності використання датчиків кутів по лінії горизонту на КА пов'язані з наявністю атмосфери і нелінійністю знімку при широких кутах огляду. В деяких роботах розглядаються можливості врахування нелінійностей для визначення кутового положення КА [3, 4, 5]. Однак це приводить до значних обчислювальних операцій з урахуванням особливостей конкретної відеокамери.

Постановка задачі.

Розглянемо можливість використання інформації про лінію горизонту для орієнтації КА в надир планети при наступних обмеженнях:

- планета має форму кулі з радіусом R_e ;
- космічний апарат знаходиться на коловій орбіті з висотою *h*, величина якої може бути визначена за допомогою радіовисотоміра;
- відеокамера має кут огляду α;
- камера встановлена на осі КА;
- вісь КА відхилена від надиру на кут γ;
- центральний половинний кут видимості КА β;
- зображення планети і навколопланетного простору контрастні;
- камера має характеристики знімка: *а* висота зображення, *b* ширина зображення (зображення в пікселях);
- розподільна здатність зображення 1 піксель.

Розв'язок задачі.

На рис. 1 наведена схема визначення кутового положення КА за допомогою однієї камери по лінії горизонту в орбітальній системі координат. Половинний центральний кут видимості КА з планети

$$\beta = \cos^{-1} \frac{R_e}{R_e + h}.$$
(1)

Радіус видимої окружності планети, що відображається на камері

$$r = R_e \sin\beta = R_e \frac{\sqrt{(R_e + h)^2 - R_e^2}}{R_e + h}.$$
 (2)

У табл. 1 наведені дані розрахунків параметрів видимості горизонту для Землі на різних висотах.

Рис. 1 – Схема визначення кутового положення КА за допомогою 1 камери по лінії горизонту

C				супутпики земли пи різних висотих		
R_e , км	<i>h</i> , км	β , град	<i>r</i> , км	Кут	Відношення	
				видимості	<u>h</u>	
				планети,	R _e	
				град.		
6370	400	19,80411	2157,141	140,3918	0,338641	
6370	500	22,00566	2385,677	135,9887	0,374518	
6370	600	23,95978	2585,593	132,0804	0,405902	
6370	700	25,72452	2763,559	128,551	0,43384	
6370	800	27,33799	2923,981	125,324	0,459024	
6370	1000	30,21076	3203,799	119,5785	0,502951	
6370	2000	40,46354	4132,166	99,07292	0,648692	

Таблиця 1–Дані розрахунків для зон видимості бортової камери супутника Землі на різних висотах

На рис. 2 показано відображення лінії горизонту на відеокамері КА.

Як видно з рис. 2 КА має поворот в площині *XOY* зв'язної системи координат з орбітальної на кут φ , в той час як відносно орбітальної системи координат кутові координати КА визначаються зсувами координат зв'язної системи координат $X_{\kappa a}O_{I}Y_{\kappa a}$ (центру відеокамери) в площині *XOZ* на величину X_{I} і в площині *YOZ* на величину Y_{I} . При цьому центр КА (O_{I}) знаходиться на відстані від центру планети на величину

$$O_1 O = R_e + h. \tag{3}$$

Рис. 2 - Зв'язок орієнтації КА з зображенням на відеокамері

Звідси кут відхилення КА в площині ХОΖ

$$\delta_x = \sin^{-1} \frac{X_1}{R_e + h}.\tag{4}$$

Відповідно

$$\delta_y = \sin^{-1} \frac{Y_1}{R_e + h}.\tag{5}$$

Алгоритм управління кутовим положенням КА з однією камерою, встановленою на осі КА може бути визначений таким чином:

- поворот КА навколо осі $Z_{\kappa a}$ на кут ψ (рис. 3) до отримання симетричності знімка на відеокамері (збіг координат Y контрастною зони лівої і правої частини зображення);

- поворот КА навколо осі $X_{\kappa a}$ до суміщення центральної осі камери з центром Землі на обчислений кут δ_{y} .

У цьому випадку кут огляду камери повинен бути більше кута видимості планети на даній висоті (табл. 1), щоб датчик горизонту забезпечував видачу інформації в момент установки КА в надир (забезпечується безперервність управління кутовим положенням).

Розглянемо визначення кутового положення КА за результатами знімка (рис. 4). Припустимо, що в зв'язаній системі координат ($X_{KA}Y_{KA}Z_{KA}$) відомі координати точок $A(x_A, y_A)$, $C(x_C, y_C)$ і $B(x_B, y_B)$. Ці координати знаходяться як контрастні точки з знімка.

Рис. 3 – Вирівнювання знімка горизонту (поворот на кут ψ)

Рис. 4 – Визначення параметрів кутового положення КА по знімку

Для визначення радіуса видимої окружності планети *r* складемо рівняння прямої, що проходить через точки *A* і *C*

$$y = y_A + \frac{(y_C - y_A)(x - x_A)}{(x_C - x_A)}.$$
 (6)

Рівняння прямої, що проходить через точку E (що знаходиться на середині відрізка AC) і перпендикулярної прямої (6) буде

$$y = y_E - \frac{(x_C - x_A)(x - x_A)}{(y_C - y_A)}.$$
(7)

Приведемо рівняння (7) до виду

$$y + A_1 x - B_1 = 0, (8)$$

(9)

де
$$A_1 = \frac{(x_C - x_A)}{(y_C - y_A)};$$

$$B_1 = y_E + \frac{(x_C - x_A)x_E}{(y_C - y_A)};$$
(10)

$$y_E = \frac{y_A + y_C}{2}.$$
 (11)

Аналогічно рівняння прямої, що проходить через точку *D* і перпендикулярної до прямої *CB* матиме вигляд

$$y + A_2 x - B_2 = 0, (12)$$

де

$$A_2 = \frac{(x_B - x_C)}{(y_B - y_C)};$$
(13)

$$B_2 = y_D + \frac{(x_B - x_C)x_D}{(y_B - y_C)};$$
(14)

$$y_D = \frac{y_C + y_B}{2}.$$
 (15)

Координати точки О визначаються виразами

$$x_0 = \frac{B_2 - B_1}{A_2 - A_1}; \tag{16}$$

$$y_0 = B_1 - \frac{A_1(B_2 - B_1)}{(A_2 - A_1)}.$$
(17)

Відповідно можна визначити радіус видимої окружності горизонту

$$r = \sqrt{(x_A - x_0)^2 + (y_A - y_0)^2}.$$
 (18)

З рис. З можна визначити кут ψ , на який потрібно повернути КА в зв'язній системі координат для направлення осі Y_{KA}^1 від центру планети

$$\psi = \tan^{-1} \frac{y_B - y_A}{x_B - x_A}.$$
 (19)

Припустимо, що система управління повернула КА на кут ψ . Алгоритм управління в цьому випадку досить простий. Напрямок повороту визначається знаком виразу

$$y_B - y_A. \tag{20}$$

Величина кутового переміщення визначається виразом (19). Переміщення здійснюється поки не виконається співвідношення

$$y_B - y_A = 0. \tag{21}$$

Визначимо величину кутового переміщення для направлення осі КА по вертикалі до планети за умови, що центр оптичної камери збігається з лінією горизонту (рис. 5). При цьому зображення на відеокамері буде відповідати рис. 56.

3 рис. 5 маємо:

$$\sin\gamma = \frac{R_e}{R_e + h}.$$
(22)

$$r = R_e \sin(90 - \gamma) = R_e \sqrt{1 - (\frac{R_e}{R_e + h})^2}.$$
 (23)

Рис. 5 – Зв'язок кутового положення КА із зображенням камери

Висота орбіти і кут у визначаються виразами

$$h = R_e \left(\frac{1}{\sqrt{1 - \left(\frac{r}{R_e}\right)^2}} - 1\right);$$
(24)

$$\gamma = \sin^{-1} \sqrt{1 - (\frac{r}{R_e})^2}.$$
 (25)

Як вже було сказано вираз (25) справедливий для випадку, наведеного на рис. 5б. Для випадків, наведених на рис. 5c і рис. 5d вираз (25) за рахунок додаткового зміщення матиме вигляд

$$\gamma = \sin^{-1} \sqrt{1 - (\frac{r}{R_e})^2} - \frac{(y_K - y_{01})}{b} \alpha_1,$$
(26)

де $(y_K - y_{01})$ – координата по вертикалі точки К в зв'язаній системі координат (щодо точки O_l);

b - розмір зображення камери по вертикалі;

α₁ - кут огляду камери по вертикалі.

Для виконання поставленої задачі використовується міні камера SQ11 (рис. 66) з такими характеристиками: роздільна здатність фото – 4032*3024

12MP; формат фото – JPG; формат зображення – 4:3, 16:9; кут огляду об'єктива – 140 градусів; габарити 23х23х23 мм.

Алгоритм обробки відеоінформації з камери не складний, що дозволяє реалізувати його на малогабаритному мікроконтроллері типу Beagle Bone Black (рис. 6*a*).

Рис. 6 – Складові датчика горизонту: мікроконтролер BeagleBone Black (*a*), малогабаритна камера SQ11 (*б*)

Апробація алгоритму обробки інформації була проведена на знімках з Міжнародної космічної станції. Результати розрахунків з достатньою точністю визначили кутове положення відеокамери у момент зйомки.

Висновки

1. Інформацію про лінію горизонту для орієнтації КА в надир планети можна використовувати для визначення кута нахилу апарату. При цьому точність кутового положення КА в надирі може бути високою незважаючи на нелінійність малогабаритної камери з великим кутом огляду.

2. Запропонований спосіб реалізації датчика горизонту для КА має невисоку вартість за рахунок використання малогабаритних відеокамер з широким кутом огляду і малогабаритного контролера.

3. Датчик горизонту з запропонованим алгоритмом орієнтації в надир може використовуватись при відсутності навігаційних параметрів КА (особливо при відсутності систем глобального позиціонування типу GPS і ГЛОНАСС) на навколоземних орбітах, а також на орбітах інших планет і їх супутників (Марс, Юпітер і його супутники, Місяць і т.д.).

4. Простий алгоритм стабілізації космічного апарату у надир дозволяє здійснювати стабілізацію КА в реальному часі з Землі за допомогою джойстика

(для супутників Землі), або астронавтом, що знаходиться на космічному кораблі на орбітах планет і їх супутників.

Бібліографічні посилання

1. Інерціально-супутникові навігаційні системи / М.К. Філяшкін, В.О. Рогожин, А.В. Скрипець, Т.І. Лукінова. – К : НАУ, 2009. – 296 с.

2. Cornall T.D. Aircraft attitude estimation from horizon video / T.D. Cornall, G.K. Egan, A. Price // ELECTRONICS LETTERS 22nd, June 2006 – IET, 2006. – N_{2} 42(13). – C. 744 - 745.

3. Hughes C. Review of Geometric Distortion Compensation in Fish-Eye Cameras / C. Hughes, M. Glavin, E. Jones, P. Denny // SIGNALS AND SYSTEMS CONFERENCE 18-19 June 2008 – IET, 2008. – C. 2 - 4.

4. Bahar M.N.D. / Modular CMOS Horizon Sensor for Small Satellite Attitude Determination and Control Subsystem / M.N.D. Bahar, M.E.M. Hassan, N. Hamzah, A.S. Arshad // ANNUAL AIAA/USU CONFERENCE ON SMALL SATELLITES 20th, 14 August 2006 – CST, 2006. –.ATSB, 2006, № 2. – C. 6 – 7

5. J. Barf. Development and Implementation of an Image-Processing-Based Horizon Sensor for Sounding Rockets. Space Engineering, master's level. – Lulee University of Technology Department of Computer Science, Electrical and Space Engineering . – 2017. 130 p.