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THE FEATURES OF LAMINAR FLUID MOTION IN THE IMPELLER OF
THE CENTRIFUGAL POROUS PUMP

Po3risinyTo Metoa po3B's3aHHS 3a4a4i pyXy PiAMHHM 110 He CTUCKAETHCS B POo004YOMYy
KOJIeCi MOPHUCTOro BillleHTPOBOro Hacoca. B pamMkax 3amponoHOBaHOro0 MeTO1y, OTPUMAJIH
PO3BUTOK TeOPeTHYHI JOCJIiJKeHHsI, CHPSIMOBAHI Ha BJIOCKOHAJEHHSI aHAJITHYHHX
3aJIe5KHOCTel, 110 J03BOJISIIOTH OLiHIOBATH 3MIHM THCKY i KIHeMATHYHMX IapaMeTpiBpianHu
NpH il JaMiHapHOMY pycCi B MOPOKHMHI MOPHUCTOr0 Tijia BiaeHTPoBOro Hacocy. Ilpuiinsro,
10 mnopucre Tio Mae aHizorpomHi BJiactuBocti. IlpuiiHsita po3paxyHkoBa cxemMa pyxy
pianHM B po0oyoMy KoJieci He BpaxOBY€ BTPATH €Heprii MpU NMOBOPOTi PiAUHU 3 0CbOBOIO
HANPSIMKY B pajiajibHe, a TAKOK MOKJIMBI BTpaTH Ha BUXPOBi sIBUIA Y BXiIHOMY mepepisi
Hacocy. Cucrema piBHSIHB, 110 ONMCY€ PYX PilMHH B MOPHCTOMY KOJIeCi, 3allHCaHA B CHCTeMi
MOJISIPHOI KOOPAMHAT B NPHUIYLIEHHI, 0 3MiHA MapaMeTpiB PilMHM N0 KYTY 00epTaHHS He
BinOyBaerbcsi. Ilpu  JjamiHapHomy pexumi  pyxy @iabTpamiiiHi  XapakTepuCTHKH
BHPAXKAOTHCS Y BUIJISAI CHMETPUYHHUX TeH30piB Apyroro panry. OTrpumMaHo piBHSIHHSA 1Jisl
CTATUYHOIO0 THCKY piAuHHM Ta (iabTpauniifHOI MIBHAKOCTI B NMOPHUCTOMY Po004YOMYy KoJeci
IOPUCTOTIO BiALIEGHTPOBOro Hacoca. Pe3yibTaTH, 0OTpUMaHi pO3paxyHKOBUM LLJISIXOM, | HABITh
paHime mnpoBeleHI eKCHePUMEHTAJIbHI JO0CHIKeHHs CBiA4aThb NPo iX JOCTATHIO IS
NPAKTHKHU TOYHICTh.

Knrowuoei cnosa: nopucme mino, poboue Koneco, meuis piounu, cucmema pieHsHb

PaccMoTpeH MeTOa pelieHHs 321a4H O ABUKEHUH HEC:KUMAEeMOM KHIKOCTH B padouem
KoJlece TMOPHUCTOro Hacoca. B pamMkax mNpemioKeHHOr0 MeToAa, MOJYYWJIH [ajbHeiilnee
pa3BuUTHE TeopeTHYeCKHEe HCCIe0BAHMS, HANpaBjJeHHble Ha COBepPIIEHCTBOBaHUE
AHAINTHYECKUX 3aBHCHMOCTEH, MO3BOJSAIINX OIEHMBATH M3MEHEHHs aBJIEHUS] W
KHHEMATHYeCKHX MapaMeTPOB NMPH JAMHUHAPHOM JBUKEHHH KHIKOCTH B MOJIOCTH MOPUCTOrO
Tesa. [IpuHATO, YTO MOPHCTOE TEJI0 MMEEeT AHU30TPOMHbIe cBoiicTBa. [IpunHATasn pacuyeTHas
cXeMa JIBUIKEeHHsl JKUKOCTH B pabouyeM KoJiece He YYNTHIBAET MOTEPH IHEPTUH NPH MOBOPOTE
JKUJIKOCTH M3 O0CEBOT0 HANPAaBJIEHHsT B pPaauajibHOe, a TaK:Ke BO3MOKHbIe MOTEPH HA
BUXpeoOpa3Hble sfIBJIeHHSI BO BXOAHOM cedeHuu. Cucrema ypaBHeHHUil, ONMUCHIBAIOIIAS
JABUKEHUE KHAKOCTH B TMOPHUCTOM KoJjece, 3alMHCAHA B TOJISIPHON cHcTeMe KOOPAMHAT B
NPeanoJioKeHUH, YTO H3MeHeHHe MAapaMeTPOB KIUJAKOCTH MO yIJIy BpalleHusl He MPOUCXOIUT.
IIpu naMUHAPHOM pe:kuMe JBHKeHUsI, (UIbTPANMOHHbIE XaPAKTEPUCTHKH BBIPAKAWTCHA B
BH/Ie CHMMETPHUYHBIX TE€H30pOB BTOpOro panra. IlosydyeHbl ypaBHeHUsI JJIsi CTATHYECKOI0
JAABJIEHUS KUAKOCTH M GUILTPANMOHHON CKOPOCTH B MOPHCTOM pPadoveM KoJjece MOPUCTOro
HEeHTPOOe:KHOro Hacoca. Pe3yibTarTbl, NMOJIydeHHbIe PACYETHBIM IyTeM, a TaK:Ke paHee
NpOBe/IeHHbIE JKCIEPUMEHTAJbHbIE MCCIEI0BAHUSI TOBOPAT O WX JOCTATOYHON JJs
NPaKTHKU TOYHOCTH.

Knrwueswie cnosa: nopucmoe meino, pabouee Konieco, meyeHue H}CUOKOCHMU, CUCmeMmd
ypagHenuu

© Katrenko M., Panchenko A., 2021



CucreMHe NPOEKTYBAHHSA Ta aHAJI3 XapaKTePUCTUK aepokocMiuHol TexHiku. Tom XXVIII

A method for solving the problem of the motion of an incompressible fluid in the
impeller of a porous pump is considered. Within the framework of the proposed method,
theoretical studies were further developed, aimed at improving the analytical dependencies,
which make it possible to evaluate the changes in pressure and kinematic parameters during
the laminar motion of fluid in the cavity of a porous body. It is assumed that the porous body
has anisotropic properties. The accepted design scheme of fluid movement in the impeller
does not take into account the energy loss when the fluid turns from the axial direction to the
radial direction, as well as possible losses due to vortex-like phenomena in the inlet section.
The system of equations describing the motion of a liquid in a porous wheel is written in a
polar coordinate system under the assumption that there is no change in the parameters of the
liquid with respect to the angle of rotation. In the laminar mode of motion, the filtration
characteristics are expressed as symmetric tensors of the second rank. Equations are obtained
for the static pressure of the liquid and the filtration rate in the porous impeller of a
centrifugal pump. The results obtained by calculation, as well as previously conducted
experimental studies, indicate that they are accurate enough for practice.

Key words: porous body, impeller, fluid flow, system of equations

Introduction. The undoubted promise of using pumping units, which include
porous bodies, in rocket and space technology, is confirmed by the growing interest,
both in the field of scientific and theoretical research, and in the field of their
practical application. The absence of pulsation phenomena during the supply of fuel
components to the combustion chamber makes it possible to reduce the instability of
the fuel combustion process in the chamber and to increase the reliability of the
propulsion system. This is especially true for low-consumption fuel systems for low-
thrust rocket engines, where it is very important to obtain high head values at low
flow rates and guaranteed stability of the feed process. When liquid is supplied to the
combustion chamber, the presence of transient processes is characteristic, and as a
consequence, it is assumed that there is both a laminar and a turbulent regime of
liquid flow in the flow path of the impeller of a porous pump. Thus, consideration of
the issue of the laminar flow of liquid in a porous impeller of a centrifugal pump is
relevant.

Review and of literary sources. For the first time, a systematic approach to
the creation of a mathematical model of fluid motion in a porous body was presented
in [1]. The study of model flows in a porous medium with rough surfaces was
presented in [2], where the boundary conditions for fluid flow were formulated for
the case of sliding. A theoretical model of effective gas permeability was developed
for the flow of a rarefied gas in a porous medium, and was presented in [3]. Some
aspects of the laminar motion of an incompressible fluid in porous bodies were
considered in [5 - 7], where it was proposed to express the filtration characteristics of
a moving fluid in the form of symmetric tensors of the second rank.

Method, object and statement of the research problem. The object of
research is the laminar flow of an incompressible fluid.The subject of research is
dynamic-type porous centrifugal pumps.The aim of the work is to develop a
mathematical model that allows calculating the change in static pressure and fluid
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velocity in a laminar flow regime in the flow path of the impeller of a porous
centrifugal pump of constant width.

Solution of the problem. Solving the problem of the motion of an
incompressible fluid in a rotating, non-deformable porous wheel having impermeable
bearing and cover disks, between which an anisotropic porous body is enclosed, and
the housing wall will make it possible to determine the dependence of the pressure
and velocity of the fluid on the radius of the wheel. In fig. 1 shows a diagram of the
considered porous impeller of a centrifugal pump.

"

N2 \3\A

1 - case, 2 - carrier disk, 3 - porous body, 4 - covering disc

Fig.1. The design scheme of a porous impeller of a centrifugal pump

As a design diagram of the fluid flow in the impeller of a porous pump, it is
assumed that the impeller has a constant width bk, the porous body is anisotropic, the
porosity of the body is determined by the parameter m, the fluid is viscous, not
compressible, the effect of resistance from external forces is not taken into account.

Let us assume that the mass resistance force is the sum of the frictional
resistance force Rg and the pressure resistance force Rpp. The pressure force acting on
the moving fluid in the cross section of the channel S of the porous annular body is
determined from the ratioR,, =Ap-S=S-(p,—p,), Wherep;and p, are the pressure in

the fluid at the inlet and outlet of the porous body.The pressure resistance force has a
direction coinciding with the direction of the relative velocity W. In the opposite
direction, the frictional resistance force R will act, which depends on the Re
number.The reaction from the action of the pressure resistance force will be directed
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in the opposite direction of the relative velocity due to the presence of a liquid
pressure drop on all particles of the medium.

Taking a constant value of the pressure gradient along the length of the porous
body, the reaction force from the action of the pressure resistance force will be
written in the form:

Re=(p.—p,)-S-(1-m).

The pressure drop acting on the liquid is balanced by the resistance and
reaction force Rg, and the pressure resistance force, and Rr = Rpp. Therefore, the
equation for the equilibrium of a liquid in a porous element can be written in the
form:

(pl_ pz)S =R; +(pl_ pZ)S(l_m)'

Hence, the mass force of friction resistance is R. =(p,-p,)-S-m. We divide the
forces of resistance of friction and pressure to the mass of the liquid, we get the next:

R R _PPgng g R (7))

B
TM lp M lp

The total mass resistance force can be written as: R= (pllp_r:Z) :

When a fluid moves in a rotating porous wheel, a large pressure gradient from
centrifugal forces acts. The porosity of the porous element is taken such that it
corresponds to the properties of an isotropic porous body. Therefore, only the mass
frictional drag force is taken into account, and the pressure drag force is taken into
account in the equations. For a porous wheel, the projections of the mass force of

pressure resistance on the polar axes r and ¢ will be, respectively,

op (1_“') op (l_l ')
R =L JandR =—= 7
DP (r or DP (@) o0 1

Considering the above, the system of equations describing the motion of a fluid
in a porous wheel in a polar coordinate system has the form:

Vr%+}V¢M_1V2¢:_ma—p+erz, 1)
o r Top x por
rvr aV§D+V¢a\/(p+V(er __MP LR m?, (2)
or Y pop 7
8(rVr)+a\/_(p:O’ (3)
or op
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where:

- Vr and Vg are the radial and circumferential components of the absolute fluid
filtration rate, r and ¢ are polar coordinates;

- Rr and Ry are the projections of the mass resistance force R porous wheel in
radial and circumferential directions.

The mass force of frictional resistance can be written as:

R=-(C+K-W)-W,
where:

- W —filtration relative speed of fluid movement in a porous wheel;

- C and K- tensors of hydraulic resistance for laminar and turbulent filtration,
respectively, which have the form:

Crr  Cor
Crp Coop

Krr  Ker
Kro Kop

cl- K=

Let's accept, Cor=CrpandKer=Kre. In projections onto the cylindrical
coordinate axes, the expressions for the mass frictional drag forces are:

Rep () =—(Cir + Kir W )-Wi , Ry, (¢) = (Cigp+ Kig-W)-Wi .

In the case of choosing a coordinate system that coincides with the main axes
of the hydraulic resistance tensor, the expressions for C and K will take the form:

Crr O
O C ! |K|=
op

Cl=

Krr 0
0 Koop ’

and the projections of the mass frictional drag force will be written in the form:
Rip (1) =—(Crr +Krr-W)-Wr, Ry, (@) =(Cpp+Kpp-W)-We.

The projections of the portable filtration velocity of the liquid on the radial and
circumferential directions, respectively, are:

Wr=VruWeo=m-w-r-Ve.

The absolute value of the portable fluid filtration rate has the form:

W = J(mar Vo) +(Vr) .
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No_NT_P _o, since the fluid flow is
dp Op g

symmetric along the ¢ coordinate. In these equations, the velocities Vr and Vg, as
well as the pressure, depend only on the radius, then the equations of motion are

transformed into differential equations of the form:

Let us take into account that—=

Typdvr 1 Vo) _ —md—p—(Crr + Krr/(mor -V @)? + (Vr)? )Vrm : 4)
m dr m r p dr

dVgo 1 (VoVr) (C¢)¢+K¢gp\/(ma)r Vgo) +(Vr) )(ma)r -Vo)m, (5)
m - m r
d
E(rVr):O. (6)

The boundary conditions are accepted as follows:
r = ry =Const; Ve(r1) = Const; Vr(r1) = Const; p(r1) = Const.

From the equation of continuity, taking into account the boundary conditions,
the projection of the absolute velocity on the radial direction is determined from the

relations:
ovr Vr _vr(rn)-r, _ Const

or r r r

Substituting the obtained expression Vr into the system of equations of motion,
we finally obtain:

2 2
d_ CO?SE +£2 Vo) —(Crr - Krr\/rz(ma)r -V ¢)? +Const? ) Const r , (7)
dr  m°r m< r 0
C K
Ve _ Vo, (Coor +Kop) Jrimae-r-Vg)? +Const? |(mar -V g)m?, (8)
dr r Const
d(rvr(n)) _ 0. o)
dr

For a laminar fluid flow, the quantity of the K-W -W is much less thanC -W ,
and can be neglected. We take the following notation:

LS - h_(cpn),q—(mzj,n—w(n) .
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Then, expressing the mass force of resistance in the form of Darcy's law, the
system of equations of motion we can be written in the following form:

2 2
dp _ n2,03 +£2(V(p) _crr2, (10)
d mr° m~ r r
dVe Vo  Cppm’r B
o (mar-Ve), (11)
Mzo. (12)
dr

Let us consider the case of a porous centrifugal wheel with constant filtration
characteristics, when Crr= Cpp = C = const. Taking this condition into account, the
system of equations of motion will be written in the form:

2
h
Ll n, (13)
r r r r
Ne 2yl
i =br Vgo(r+ar}, (14)
a(nvr®) _, (15)
dr '

The equation is a first-order linear differential equation that can be solved
using the method of variations of arbitrary constants. We solve the homogeneous
differential equation (14). The solution to the differential equation is obtained in the
form:

e C,

Vo= ,
r

where C; is a constant.
We substitute the obtained expression for the velocity V¢ into a homogeneous

differential equation, as a result we obtain next:

dr

Let's integrate this equation. As a result of integration, we get:

ob(ar? &
Cl:?[Tez —82 +C2J,
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where C; is the constant of integration.
We substitute all the obtained components into the equation for the velocity V¢

Thus, after the transformation, we have an expression for the constant of
integration C,, which makes it possible to obtain a solution to the equation for the

desired velocity:
C2 :V¢(E)a2r1 e%_ ilz_l e%'
2b 2

Taking into account the previously adopted designations, the equations for the
velocity V¢ will have the following form:

cm’,  Cm?r?
Vo =mar - 2aNr () E—l— 2aNr(r)r, Cmor? e @ rmx E
mC r mC ! r

To solve the differential pressure equation (13), we substitute the obtained
equation for the velocity veinto it, and take into account the previously adopted

designations. Then the equation for determining the pressure will take the following
form:

—_ —_ +_
dar r® rd 2 2

dp_%+q[g_2_b 2b e—]_h
a ar ar

Let us integrate the resulting expression. Considering the initial conditions
r=ri; Vo = Vo(r1) = const equation of the form:

p(Vr(rl)rl)2+a)2r2p (4a)2Vr(r)rlpj| (")

2m?r? 2 mC

2 cm? nor Cm?r2
[20)2 (Vr(rl)rl) pj 1 +[4a)2 (Vr(rl)rl)p —2(02,0!’ j 2Vr(r1)J':|-e 2Vr(r1)r1dr
1

m*C? r? m?C

r.2

n

2Vr(r1)r1 dr +
m*C? m*C

[ Vr(r)r p 40* (Vl’(l’)r } 2?/?(:11).;‘ Lt
L
2

cm’n cm’r?
Lwc(:r)r) ot zj 2Vr(r1)J' e 2"®Widr —Cp(Vr(r)r,)In(r)
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Finally, we obtain a system of equations that allows us to calculate the values
of pressures and velocities along the radius of the impeller of a porous centrifugal
pump in the form:

_ p(Vr(n)’  @’r’p (4eNr(t)rp
p(r)=pr(r)+ o2zt ( poers J'()

2 cm?y mr
(Za)z (Vr(rl)rl) p] 1 +[4a)2 (Vr(rl)rl)p _2a)2pr J 2Vr(r1)J‘:|-e Z\C/r(q)rldr
1

m*C? r? m?C

r2

h

. (16)

_[86"2 (Vr(e)n)’ p 40" (Vr(r)p J ZCVT(E)JL Cm'r®

2Vr(r1)r1dr +
m*C? m*C

2 cm’ Cm?r?
%(%érl)rl) ZJ 2Vr(r1)-[ ZVr(r1)r1dr_Cp(vr(n)rl)m(r)

cm’n, - Cm?r?
Vg = mer — 2aNr(r)r 1 +(2a)Vr(r1)rl _ mwrlzjezvml)e r(n)n, 1 (17)
mC r mC r
m = pSVr = const . (18)

The integrals included in expression (16) must be determined by numerical
methods for given values of the radii. To determine the velocities and pressures of a
liquid in a centrifugal wheel, a filtration characteristic of a porous body is required.

Analysis of the obtained results. During the theoretical study, it was assumed
that the porosity of the porous body was isotropic and did not depend on the radius.
This greatly simplified the starting point for theoretical research.

In fig. 2 shows the results of calculations of the relative velocityV ¢, depending
on the relative radius and porosity of the porous body.

The case when the value of porosity m = 1 will correspond to the impeller of a
disk pump, with an inter-disk space equal to bk, which is confirmed by the theoretical
provisions in [7].

As noted earlier, in real designs of porous impellers, the porous body is
anisotropic, and the calculated values for each radius must be determined based on
the value of the actual porosity. Previous experimental studies to determine the
dependences of pressure drops and fluid velocities in porous bodies at different
angles of pouring samples, confirmed that the filtration characteristics expressed by
second-rank tensors in a laminar flow regime are determined with sufficient accuracy
for practice [5].
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Fig. 2. The dependence of the relative speed of the V¢ on the relative
radius of the impeller r and the porosity of the porous body m

Conclusions. As a eventually of the theoretical studies, the following results
were obtained:

- on the basis of the model of the laminar motion of a viscous incompressible
fluid in the flow path of a porous pump rotating in a stationary body, relations for
determining the parameters of the fluid along the radius of the impeller are obtained,;

- the proposed mathematical model can be used as a basis for the numerical
solution of laminar fluid flow in the impeller of a porous pump.
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