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Abstract. In this work a neuro-fuzzy system with all its parameters adjustment is pro-
posed. It is used as a node of the evolving multilayer system. The system architecture can evolve
in online mode as the synaptic weights, centers and widths parameters of the neuro-fuzzy nodes
are adjusted improving approximation properties of the system.
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Introduction

Nowadays hybrid systems of computational intelligence are
widely used for solving different Data Mining tasks: pattern recogni-
tion, identification, emulation, etc. In practice it’s a common situation
when data come sequentially in online mode. This task is concerned by
an intensively developing field, known as Dynamic Data Mining and
Data Stream Mining [1]. The most effective systems for solving these
tasks are evolving computational intelligence systems (ECIS) [2-6], that
adjust their architecture during learning process. It should be noticed
that the base of the majority of the known ECIS are multilayered neuro-
fuzzy systems of TSK- and ANFIS-type [4-8].

Conventionally “learning” is defined as a synaptic weights ad-
justment process with the given learning criterion optimization. The
quality of learning can be significantly improved by adjusting not only
synaptic weights of the system but also its architecture, and in the case
of NFSs — also its membership functions parameters.

In this paper an evolving multilayer neuro-fuzzy system is pro-
posed. This system is trained using simple learning procedures and it
adjusts all its parameters, improving its approximation properties.

The evolving multilayer neuro-fuzzy system architecture

The architecture of the evolving multilayer neuro-fuzzy system is

shown in Figure 1. To the zero (receptive) layer of the system a
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(nx1)-dimensional vector of input signals x(k)=(x(k), xz(k),...,xn(k))T is
fed (here k=1,2,..., N is either the current discrete time index or the ob-

servation number in training set). Then this vector is fed to the first

hidden layer that contains n; :c,zl nodes, each having two inputs.

Fig. 1. Evolving multilayer neuro-fuzzy system
Among the output signals 1}51] (k) (l=1, 2,...,0,5n(n—1)=c,%) of the
first layer nodes N the selection block of the first layer sB selects
n (nl* <n) most precise signals in the sense of accepted criterion, usu-
ally by the mean squared error O'il[l] . Then from these n,” best outputs

[1]+

» (E) are formed (usually n<n, <2n).

A[1]* N

n, pairwise combinations yE] (k),y

These signals are fed to the second hidden layer, formed by nodes N1
~|2

similar to the neurons ~!". Among the output signals yE : (k) of the sec-

ond hidden layer the selection block of the second hidden layer SBP! se-

lects only signals that by accuracy are better than ;[11]* (k), i. e. that are
better than the best signal of the first hidden layer. The third hidden

/\[2]*
layer forms signals that are more accurate than the best signal y, (k)

and so on. The process of the system evolution continues until only two
Als—=1|* Als=1]*

signals y[1 ! (k) and y[2 ! (k) are formed on the output of the selection

block SBI*~!. These two signals are then fed to the single output node

~[5]
NB¥1, that calculates the output signal y (k) of the system.
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Neuro-fuzzy network with all parameters adjustment as a node of the

evolving multilayer system
The architecture of the node proposed as a neuron of the consid-
ered evolving multilayer system is shown in Figure 2.

Fig. 2. Node of the evolving multilayer system
The node architecture is in fact a Wang—Mendel neuro-fuzzy sys-
tem [30,31] with two inputs x;(k) and x j(k), five sequentially connected

layers for information processing and one output ;(k) To the input of

node a two-dimensional vector of input signals x(k):(xl-(k), X j(k))T is fed.

The first layer of a node provides fuzzification of the input variables.
The elements of the first layer compute membership levels
0 <y (x; (k) <1, O<,ulj(xj(k))£ 1, I=1,2,..,h. To avoid appearing of “gaps”
in the fuzzified space while using scatter partitioning of input space [7]
the bell-shaped constructions with non-strictly local receptive support

are usually used as membership functions. Mostly the Gaussians are
used as membership functions of the first layer

#1i(xi(k))=eXp[— ("f(k)‘f”("”zj, yy(x,«k)):exp{— b=, 07 ] 0

207 (k) 207; (k)

where c;(k), clj(k) are parameters that define the centers of the mem-
bership functions, o;(k), alj(k) are width parameters of these functions.

The second layer contains /# multiplication units and forms two-
dimensional radial basis activation functions yh-(xi(k)),u]j (x j(k)). This
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layer provides aggregation of the membership levels, that are computed

in the first layer. Outputs of the second layer 4 are values
%) (k)= g (s () (k). (2)
The third layer is one of synaptic weights that are adjusted dur-
ing learning process. The number of the membership functions # on

each input defines the number of weights. The outputs of the third layer
are values

W;j My (xi (k ))/lzj‘ (x J (k )): W;j X (k ) (3)
The fourth layer contains two summation units. In this layer the

sums of the output signals of the second and the third layers are com-
puted

éﬂh(xi(k))ﬂy(xj(k))=éi?z(k), éw}j ﬂzi(xi(k))ﬂzj( (k)= wajf;() 4)

Finally, in the fifth (output) layer normalization is realized and
the output signal of node is computed

!;(k) h = l=1h :Zh:wlij hxl(k) =
;ﬂpz(xl(k))up,(xj(k)) 25k RE(E) G
_ zw 7 (x (k) = ()" 7 (x (),
where P (x(k)) = (g (x(k)). . o7 (x(8)) wil = (W wi |,

h

-1
o )=y ) 2 s )]
=
The adjustment procedures for all parameters of the system

~[1]
Considering that the reference signal y, (k) of every node of the

system depends linearly on the adjusted synaptic weights w;j , for their

adjustment we can use either the conventional least squares method, or
its recurrent form. If training data is non-stationary, for weights ad-
justment it is reasonable to use the exponentially weighted recurrent
least-squares method in the form
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P 1) ) (- ) a0 o )

o+ (1 (x(k))| Pk = 1) (x()) 6)
Pﬂ(k):%[l,ﬁ(k_l) e b ) ..""("‘”J
+ o (x(k))" Pk = 1 (x(k)

(here 0<a <1 is forgetting factor, ( ) reference signal) or the expo-

wh (k)= w (k—1)+

nentially weighted gradient learning algorithm for neuro-fuzzy sys-
tems [22]

W)= wilk 1)+ (47 6] [ 06~ (=) (1) o x(0),
B9 (k)= ap? (k~1)+ | (x(0))

The centers and weights parameters adjustment can be realized

(7

0<a<l.

using the gradient procedures of the learning criterion minimization

0= 100~ €6 f = 1ot - W )] ®

in the form

OEM (k
k)= li—1) -, o)
rl

~ ~ oEW (k
5 0= k1), )
ri

(9)

b

ri
where r=1,2,...,h; 1., 1, are learning rates for the center and the width
parameter correspondingly, 5'r2,~ (k)= —0,50';-2 (k) It easy to see that

L.y )0 v 0 LD o

L) (i x0) -0 1) )

052 =1 052
op!(x(k)) _ 4 09! (x(k))
oc 52

7i i

The derivatives in Eq. (10) can be written

in the form
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op; (x(k)) i oy él H pi (x; (k))ﬂpj (x . (k))— w0 (x; (k)):ulj (xj (k))

1 (Xj ( k)) Oy (xi (k ))

2

5cri h 2 acl"i
[gwww%@@ﬂ
a¢l (X(k)) i 5]r pZ::1 :upi (xi (k)):upj ()Cj (k))_ Hji (xi (k)):ulj (xj (k)) » (x (k)) 8,ur,- (Xi (k))
7Y 052

05 [ > st (k))T

p=1
where ¢, is the Kronecker delta.

Oty (xi (k )) and Otlyi (xi (k ))

~2
acy; Oy

The derivatives , defined on the base of

Eq. (1), can be written in the form

Ot (x; (k )) _ X (k ) —Cri (k ) exp[— (x; (k ) —Cri (k ))2 J

oc,; O'rzi (k) 20}2,- (k) ’ (12)
Oty (xi (k )) _ 2 (xi (k ) —Gi (k ))2
) (0 0 o - S|

In such a way we can adjust all synaptic weights, centers and
width parameters of the membership functions of the first hidden layer
nodes of the system. The nodes of next layers are adjusted similarly to
the nodes of the first hidden layer but the node inputs of the sth layer

Als=1|x ~fs=1|*
are pairwise combinations of the signals yE ] ,yED ] , formed by the se-

lection block SBY™!. The reference signal y(k) is one for all elements of
the evolving multilayer system.
Computational experiments

The efficiency of the proposed approach was demonstrated by
solving the problem of the emulation of the dynamic object [32] that is
described by the equation

vplk+1)= sy, (k) v, (k=1). v, (k=2) ulk), u(k ~1). (13)

The emulation results are presented in Figure 3 (actual values are

marked with dotted line, emulation results are marked with solid line).
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Fig. 3 — A fragment of the emulation results
The training set for the experiment was obtained using Eq. (12)

) _ X1 XpX3Xs (x3 - 1) + x4
1+ x32 + x%
u(k)=0.8sin(27k /250)+0.2sin(27k /25). As the prediction quality criterion

the mean squared error (MSE) was used. This experiment was carried

and

with  control  signals £ xy, %, %3, X4, X

out for several values of /4. For #=5 the mean squared error is equal to
0,00175, for =10 MSE=0,00120, for =20 MSE=0,00115.
Conclusion

In the paper the neuro-fuzzy network with all its parameters ad-
justment is proposed as a node of the evolving multilayer system. The
system architecture can evolve in online mode as the synaptic weights,
centers and widths parameters of the proposed neuro-fuzzy nodes are
adjusted.
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