1(120) 2019 «CucteMHbIe TeXHOJOTUN»

UDK 004.05
A.A. Litvinov, V.V. Gerasimov, D.S. Kovalchuk, V.V. Krokhin

ON BASIC PRINCIPLES OF MINIMUM VALUABLE INFORMATION
SYSTEM DEVELOPMENT AND PREPARATION OF PROFESSIONAL
SOFTWARE DEVELOPERS

Annotation. Basic principles of minimum valuable information system devel-
opment are summarized and formalized: the system should be developed ac-
cording to principles of service-oriented architecture; it should be flexible and
testable; increasing the flexibility of the system causes the improving of its
testing infrastructure; the process of evolutionary development considers
stubbing the lower layers components. An example of flexible and maintain-
able system developed according to the provided principles in short terms is
also provided.

Keywords: robust system development, software development principles, WCF,
WPF, ADO.NET, TDD, MVVM, MS SQL Server.

Problem statement. The era of Information Technology dictates new rules
for small business companies, causing the continuous improvement of the software
information systems: from conventional Bookkeeping applications to Document-
driven and Data-driven decision support systems. Private schools are not exceptions.
COTS (Commercial off-the-shelf) products cannot be implemented directly because
of domain and business specific, and the only solution is the development of the
original information system.

As usual, the set of functional requirements provided by the customer is not
complete and refactoring and improvement of the existed units in accordance with
the requirements changes could be considered as a business-as-usual situation. For
example, the primary set of requirements provided by the private school is as fol-
lows. The system should simplify the monitoring of the work done by teachers, visits
to students, payments for tuition, teachers' salaries according to skill level and work-
load. The system should also provide an ability to make and use the schedule of
training; and implement a multi-level personal data access control. Usually, when
developers ask customer about further improvements such as web-applications and
mobile device clients support, students’ remote access etc., customer will reply ‘no’.

© Litvinov A.A., Gerasimov V.V., Kovalchuk D.S., Krokhin V.V., 2019

ISSN 1562-9945 107

1(120) 2019 «CucTeMHbIe TeXHOJOTUU»

But in the reality, the main part of the lifecycle (especially for modern information
systems) is devoted to its evolution and adoption for new requirements after its de-
ployment. Thus, developers face the problem of building highly flexible information
system able to be improved and adopted for the business needs without extraordi-
nary expenses.

Background. The starting point of the system evolution is MVP (minimum
valuable product). According to Ries [1], the MVP is the “version of a new product
which allows a team to collect the maximum amount of validated learning about custom-
ers with the least effort.” The MVP should have the core features which allow it to be
deployed to some real customers. The purpose of the MVP is getting initial feedback
from the customers minimizing the risks of further development. The next steps are
learning and measuring customer requirements, defining and prioritizing new objec-
tives. Then the system should be adopted to the customer needs as soon as it possi-
ble. How to make the system adaptable to the dynamics of changes is the central
question of software development. Most of the patterns, approaches and princi-
ples [2-4] are developed to achieve this goal. It is notable that the system should
have the potential of flexibility from the start.

The purpose of the study is to answer the following questions: What is the
structure of minimum valuable information system with the properties stated above,
i.e. which layers and units are required to make the system work and ready for fur-
ther improvements? What principles and methods should be used by the small group
of developers to develop such information system? Pure approaches such as TDD,
BDD, use-case driven development etc. cannot be used because of the terms and cost
restrictions connected to such projects.

In the other hand, during the learning process we encounter the problems of
preparation of professionals able to develop such modern systems. Thus, this work
can be regarded as an attempt to answer the questions.

Main part. Taking the evolutionary development as the foundation, we need
to identify the initial point of the evolution, i.e. the skeleton of the system: layers,
patterns, development considerations etc. If we look towards the system improve-
ment, we should admit that the only choice is service-oriented architecture. Thus,
we can define the first rule of minimum valuable system, it asserts that each modern
application intended to be used collectively should have a potential of its use through re-
mote access using Web protocols. In addition, using Web-service technologies system
increases its openness, i.e. it makes the system opened to other systems as a service
and, reversely, allowing to use other systems as services. Taking this assertion as an

108 ISSN 1562-9945

1(120) 2019 «CucteMHbIe TeXHOJOTUN»

axiom we can define three basic layers of the system: user applications, service,
server application (business logic). Thus, generally, in terms of set theory, the sys-
tem can be defined as a system consisted of a set of clients C, a set of external ser-
vices 5: a set of system services 5., and a set of business logic server components B
(Fig. 1):

Client variations External services

donor

Core

Figure 1 - Structure of generic modern information system

6 =1{(C,S,S..B) (1)

It is notable that the minimum valuable version of the system can be de-
scribed by (2): s; a definite service without external services utilization, only one
variant of user application is realized and business logic represented in its minimum
valuable version. The transformation (3) defines the existence of a procedure (set of
activities) able to transform the minimal version to its advanced form according to
dynamics of changes, i.e. minimal version should have the potential of growth. Gen-
erally, we can think about the number of such procedures and the selection of the

best one.
G’n’:!]! = {CIJ s:’: g: Brnin)J CI = C , s!' £ .5‘ (2)
Cr: G’m:’:: - ﬁ" Cr € L (3)

The second rule is connected to the business layer that is the core of the sys-
tem. While the services are responsible for remote access and primary operations,
business logic can be regarded as the core responsible for functionality. It can be di-
vided into three main parts: business simulation, data access layer, database. And
the rule states that business logic must be prepared for change, the system must be
ready to change database provider. Formally, the assertion can be represented by the
formulas (4) and (5), where R means business logic and A denotes the set of “data ac-

cess components — storage” relations.
B =(R,A), W
A=y rfla,daeAde DY,)

Minimal version of the business logic layer can be represented by (6).

ISSN 1562-9945 109

1 (120) 2019 «CucTeMHbIE TEeXHOJIOTUU»
Bmin =def (R, {a,d)){a,d)e A , 6)

The transformation (7) of B,.» to B means the existence of an effective proce-
dure responsible for the evolution. The effectiveness of the procedure depends on
time, efforts and cost spent to achieve the result and can be estimated

Jgﬁgmz':: — B, 18;' €B (7

It is obvious that the time and efforts spent on modification the layer and/or
its reconfiguration (e.g. changing database provider) depends on testing environ-
ment and test coverage of the code involved in the modification. Thus, the third rule
states that the increasing the flexibility of the system causes the improving of its testing
infrastructure.

Next, to make the system and its components testable and maintainable we
need to follow interface-oriented programming paradigm and an additional set of rules
represented as SOLID principles. Simply speaking, the system is represented a set of
modules connected via interfaces. The dependencies of a module (classes the mod-
ule depends on) are injected via constructor on the phase of its instantiation.

The next question is how to solve the tasks of modification the multi-layered
system rapidly. The goal is to involve end-user in checking the functionality (use-
case, user story) being developed as earlier as it possible. It implies the need to start
with Ul construction stubbing the lower layers (Fig. 2.).

1. User 3. Business logic

User interface Service stub BL&DAL is absent
interface and Database
User interface Service BL&DAL stub
User interface Service BL&DAL
2. Service

Figure 2 - Basics phases of use-case realization

In such a way to start user interface development we need only to have a
stub of the service client and realization of service and business logic layers becomes
unnecessary. It significantly simplifies the process. When the Ul is realized and end-
user commits that it met the requirements, the next step is to realize the service,
stubbing the dependencies, i.e. business logic classes it depends on. Thus, there are
three basic steps needed to realize the function.

This process allows us to make the system gradually through the evolution-
ary approach avoiding rushing and misunderstandings. When the work is split
among several developers, stubbing also allows them to work independently. Of
course, stubbing considers interface-based organization of the system, using de-

110 ISSN 1562-9945

1(120) 2019 «CucteMHbIe TeXHOJOTUN»

pendency injection, because the stub is a variant of realization of an interface in-
jected into the class being developed.

Experimental part. As an example, we provide an information system to
support the educational process of a private school developed by master's degree
student D. S. Kovalchuk. The system was realized in short terms (2 months) by only
one developer using the knowledge and experience gained during the first semester
of the master course.

Despite the initial requirements provided by the customers D. S. Kovalchuk
decided to develop the flexible system based on above principles. Using the princi-
ples doesn’t mean to give them equal priority. System composed of the four basic
layers: Ul, service, business logic layer and data access layer. Most of the classes
within the layers made flexible based on interface-based programming and SOLID
principles. Especially, the attention was focused on connection classes with depend-
encies. In the result, it increased the level of testability and maintainability of the
modules. Estimating the layers against quality attributes such as flexibility and test-
ability, we have the system with a high potential of improvement, but most of mod-
ules have insufficient test coverage level (Fig. 3.). High level of flexibility means that
the layer can be reconfigured or changed quickly without significant efforts, medium
means that not all connections used via interfaces and therefore it is possible that
the requirements changes causing the system could not be handled easily. The low
level of test coverage of Ul and service layers dictated by the short development
terms and the specific of the domain, but as we can see the potential testability level
is medium, i.e. unit, integration and system tests can be added in accordance with
the needs.

| Flexibility || Testability || Tests coverage |

Ul || High || Medium |

|

Service		Medium		Medium		Low
BLL		Medium		Medium		Medium
DpAL		High		High		High

Figure 3 - Estimation of the layers against the most important quality attributes

Below we provide detailed description of the project, i.e. its structure, pat-
terns and technologies used.

Communication between the client and the server is carried out using Win-
dow Communication Foundation (WCF) technology, which works through web ser-
vices. Based on this, the system architecture can also be considered as service-

ISSN 1562-9945 111

1(120) 2019 «CucTeMHbIe TeXHOJOTUU»

oriented [6]. Thus, in the future, you can increase the functionality of the system,
connecting new services.

The designed system operates within the local area network of the enterprise
(for example, a Wi-Fi network). Now the network is closed for public access; but it
could easily be open for Internet network clients.

As it was mentioned above the connection with the database is carried out
through an intermediate layer between the business logic of the server and the data-
base itself — the Data access layer (DAL). Since server modules do not connect rig-
idly, but through interfaces, you can easily replace a module with any other module
that satisfies the contract of a particular interface. Thus, initially using MS SQL
Server [8] as a database provider, if necessary, it will be possible to switch to the
document-oriented MongoDB system [7]. The implementation of work with this
technology, namely the connection to the database, a set of various requests, calls to
stored procedures, connection termination — is placed in the previously mentioned
layer DAL.

The system has a multi-level personal data access control. This ensures the
separation of user access to data according to their roles. For example, when logging
in to the user, only those controls that allow him to perform the allowed set of ac-
tions will be active (Fig. 4). This system of user roles is implemented by storing in
the database the relevant information about the type of user role, as well as using
appropriate business logic that processes the role before providing opportunities to
work with the system.

- Hamnan eatwns =
TR T erp—— P et ik PEN o Fu s 11 u80d
FROTHIAN e 3 rile Pt ERE
Dbues pacnncaHAe Lt Korvadcmake -

W e L= Sl R y=

Aot

pwrem 1 -5 ami
Frd

Fiipan LaHITRS o [RNTT A A

L& wyrerup - B0 1300 '

J-mumseray v LEOG W

Figure 4 - The main window of the application

112 ISSN 1562-9945

1(120) 2019 «CucteMHbIe TeXHOJOTUN»

The client application was developed using the Windows Presentation Foun-
dation (WPF) technology [9], which provides a friendly and customizable user inter-
face for the application. A Model-View-View Model (MVVM) design pattern [10] was
also applied, in which the business logic, the workspace interface itself, and the
binding of controls to the processing logic are divided into three components.

At each level of the system, the principle of modularity is applied, that is, it
is possible to replace, if necessary, one module or another with another, implement-
ing the necessary contract. That the client, that any module on the server, including
the database itself, can be replaced with a new one. This suggests a sufficient flexi-
bility of the system and solves the main problem of the maintenance of the devel-
oped product today.

Service-oriented system architecture involves working with services, which
in turn are autonomous business logic modules. This allows you to scale the system,
expanding the range of its business functions in the future. Thus, it will be possible
to “connect” various additional modules, such as corporate chat, work with files on
the cloud etc.

Results. Basic principles of modern information system development are
summarized and formalized. In short, required options are as follows: the system
should be developed according to principles of service-oriented architecture; it
should be flexible and testable, that means the following the principles of interface-
based development and SOLID; increasing the flexibility of the system causes the
improving of its testing infrastructure; the process of evolutionary development
considers stubbing the lower layers components. These principles were offered in
the discipline of robust software systems development (first semester of the master
course) and students received such training are able to develop flexible systems in
short terms. An example of developed system is also provided. The system is ready
to changes, can be easily modified and reconfigured responding to customer needs.

REFERENCES

1. Eric Ries. The Lean Startup: How Today's Entrepreneurs Use Continuous Inno-
vation to Create Radically Successful Businesses. 336 p.

2. Beck K. Test-Driven Development By Example. —Addison-Wesley.-2002.-240 p.

3. Beck K. Extreme Programming Explained: Embrace Change: 2nd edition. - Ad-
dison-Wesley — 2004. — 224 p.

4. Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley Longman, Reading, MA, First. — 2003.

ISSN 1562-9945 113

1(120) 2019 «CucTeMHbIe TeXHOJOTUU»

5. JlutBunoB A. A., Kapnenko H. B. TectupoBanue MHOOPMAIMOHHBIX CUCTEM:
MOJY/IbHOE, MHTETPalMOHHOe, CUCTEMHOEe: yuebHoe mocobue. / A. A. JIntBuHoB, H.
B. Kapnienko — [I.: JIupa, 2016. 283 c.

6. JlutBuHoB O. A., Xanaenbkuii B. C. PosnoaineHa o6pobka indopmaiiii : [MOHO-
rp.] / O. A. JlutBunoB, B. C. Xaugenpkuit — [I.: TOB «bananc-Kny6», 2013. 314 c.

7. Open Source Document Database | MongoDB [Electronic resource]. Access
Mode: https://www.mongodb.com

8. ADO.NET | Microsoft Docs [Electronic resource]. Access mode:
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/

9. Windows Presentation Foundation (WPF) | Microsoft Docs [Electronic resource].
Access mode: https://docs.microsoft.com/en-us/dotnet/framework/wpf/

10. Model-View-ViewModel - Wikipedia [Electronic resource]. Access mode:
https://en.wikipedia.org/wiki/Model-View-ViewModel

REFERENCES

1. Eric Ries. The Lean Startup: How Today's Entrepreneurs Use Continuous Inno-
vation to Create Radically Successful Businesses. 336 p.

2. Beck K. Test-Driven Development By Example. —Addison-Wesley.—2002.-240 p.

3. Beck K. Extreme Programming Explained: Embrace Change: 2nd edition. - Ad-
dison-Wesley — 2004. — 224 p.

4. Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley Longman, Reading, MA, First. — 2003.

5. Litvinov A. A., Karpenko N. V. Testirovanie informatsionnyih sistem: modul-
noe, integratsionnoe, sistemnoe: uchebnoe posobie. / A. A. Litvinov, N. V. Karpenko
— D.: Lira, 2016. 283 s.

6. Lytvynov O. A., Khandetskyi V. S. Rozpodilena obrobka informatsii : [monohr.] /
O. A. Lytvynov, V. S. Khandetskyi — D.: TOV «Balans-Klub», 2013. 314 s.

7. Open Source Document Database | MongoDB [Electronic resource]. Access
Mode: https://www.mongodb.com

8. ADO.NET | Microsoft Docs [Electronic resource]. Access mode:
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/

9. Windows Presentation Foundation (WPF) | Microsoft Docs [Electronic resource].
Access mode: https://docs.microsoft.com/en-us/dotnet/framework/wpf/

10. Model-View-ViewModel - Wikipedia [Electronic resource]. Access mode:
https://en.wikipedia.org/wiki/Model-View-ViewModel

114 ISSN 1562-9945

