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Abstract. The current paper discusses the adaptive choice of a filter time constant for filtering 
the steady-state flux reference in the energy-efficient control problem of field-orientation induc-
tion machines in transient behavior when load and speed conditions are changing taking into 
account the effect of the main induction saturation. It is shown that by appropriately managing 
the flux linkage rate of change the energy losses per full operation cycle under torque changes 
can be significantly reduced compared to the conventional cases. The analysis for the appropri-
ate choice of the filter time constant as a fraction of the rotor time constant is based on a nu-
merical study and simulation results for three different induction machines with different rated 
powers. 
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Statement of the problem and analysis of the recent research and 
publications. The induction machine is widely used in industrial applications 

due to its robustness and its low cost compared to permanent magnet syn-

chronous machines. However, in part-load operation, the efficiency of the in-

duction machine dramatically decreases when the flux is kept at the nominal 

level. To address this issue different strategies have been developed in the 

past to increase the efficiency of the induction machine in a large operation 

range [1],[2]. However, when the induction machine is operated under chang-

ing loads these methods will not yield maximum efficiency. A solution to this 

problem in the framework of vehicle applications is given in [3]. However, the 

motor for these applications will often operate in dynamics with changing 

torques and speed up to voltage and current limits. The development of pa-

rametrized prototypes is discussed in [4]. Unfortunately, without voltage and 

current limits as well. These limits require the knowledge of the behavior of 

the process quantities, which can be obtained from offline optimization [5]. 
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Purpose of the study. The current paper discusses a different

approach. The motivation is to give a simple and easy implementable solution

to the problem of energy consumption minimization, which is characterized

by a continuity of action, converges to the optimal flux level in the steady-

state and expresses a compromise approach to the problem with changing

loads in dynamics as well as provide an alternative solution to model

predictive control [6].  

Statement of main research material. State-space model. An

induction machine operated with high dynamics is controlled as a rule via a

field-oriented scheme. The approach in the sequel implies the orientation

along the rotor flux linkage Ψ2, i.e. the flux linkage phasor is aligned with the

d-axis of the rotating frame. The full model thus has four state variables:

field-producing current i1d, torque-producing current i1q, rotor flux Ψ2, and

motor speed ω2; and two controls: the stator voltage phasor components u1d

and u1q. The continuous state-space model of an induction machine is given as

follows (Г-inverse equivalent circuit parameters are used): 

 
x (x)x u

y Cx
= Α +Β + δ

 =

ɺ
 (1) 

with state (4x1)x∈ℝ  represented by 1d 1q 2 2x = [       ]i i ΤΨ ω  and control (2x1)u∈ℝ

consisting of the terminal voltages, given by 1d 1qu = [   ]u u Τ ; (4x1)δ∈ℝ  is a

disturbance vector, given by p e load= [0  0  0  ( - )/ ]Z T T J Τδ , with J denoting the

total moment of inertia of the rotating couplings, Zp is the number of pole

pairs, Te and Tload are motor and load torque, respectively; and (4x4)(x)Α ∈ℝ  is

the characteristic matrix of the system, given by the following expression 
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with stator and rotor resistances R1 and R2 respectively; Lσ is the stray

inductance and Lm denotes the main inductance; and ω1 as the synchronous

speed in electrical radians per second, obtained from 
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where ωslip is the slip speed. (4x2)Β∈ℝ  is the input matrix given by 

1 / 0
0 1 /
0 0
0 0

L
L

σ

σ

 
 
 Β =
 
 
  .    (4) 

(2x1)y∈ℝ  is the outputs vector given by 2 2y = [   ]ΤΨ ω ; the matrix of outputs 
(2x4)C∈ℝ  is given by  

 
0 0 1 0

C
0 0 0 1
 

=  
 

. (5) 

The electromagnetic torque is given by  

 e p 2 1q
3
2

T Z i= Ψ  (6) 

Main inductance saturation. The modelling of an induction machine to 

be adequate must consider the nonlinear nature of the machine magnetic 

characteristics. The measured main inductance data points are shown in 

Fig. 1. The minimum allowable set consists of 5-6 points. In addition, with a 

small amount of data, “abnormal” results cannot be included in the sampling 

sequence. Hence, the bigger the number of points, the better. The experimen-

tally measured data of nineteen points is further approximated using the 

method of least squares. An obvious “applicant” immediately appears here in 

a form of a high-degree polynomial whose curve passes through all measured 

points. But this option is, more often than not, simply incorrect and reflects 

the main trend poorly. Thus, the desired function should be relatively simple 

and at the same time reflect the dependence adequately. We will restrict the 

degree of resulting polynomial to fifth degree. In this case, the objective con-

sists of adjusting the parameters of a model function m 1d( ) :L i →ℝ ℝ , 1di∀ ∈ℝ . 

To fit the model to a data it is required to find the optimal parameter values 

by minimizing the sum of squared residuals given in the following form 
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where P1-P6 are the function parameter values to be found; kλ  and kY  are

measured field-producing current and main inductance values, respectively. 

In essence, it is necessary to solve the problem of finding the mini-

mum of the function of six variables. First things first, let us find all partial

derivatives of the first order. According to the rule of linearity, it is allowed to

differentiate under the sum sign:  
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 (8) 

Now compose a typical system equating each expression from (8) to 0.

Then divide each equation by two and, in addition, split the sums: 
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The obtained system (9) can be solved, for example, by Cramer’s rule, 

and as a result, a stationary point is obtained ( )* * * * * *
1 2 3 4 5 6, , , , ,F P P P P P P . By 

checking the sufficient condition for the extremum, we can verify that at ex-

actly this point the function reaches its minimum. The check is connected 

with additional calculations and therefore it is left behind the scenes. The 

function with ( )0.669,3.606, 6.622,4.415, 0.743,0.754F − − −  in the best way (at 

least in comparison with any other function) approximates the experimental 

points. 
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Figure 1 - Measured main inductance dependence and its  

polynomial approximation for a 370-W motor 
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Main idea. Let us consider a certain case of load torque disturbance on

the induction machine shaft. Assume that before a perturbation in the motor

torque of magnitude ΔTload the motor operates in the optimal mode of power

consumption. It is obvious that after a change in the torque Te on the shaft to

the new value Te+ΔTload, ΔTload ≥ 0, the speed controller will increase the refer-

ence of the torque-producing current in order to maintain the speed at a given

level. Consider two boundary modes of behavior of the system under a change

in the load torque on the motor shaft illustrated in Fig. 2: 

1. The rotor flux linkage stays unvaried. 

2. The rotor flux linkage is set to its new optimum steady-state value. 

In the first case, the torque-producing current rapidly increases to its

steady-state value, but under the new value of the torque on the shaft, the

power consumption will not be optimal. In the second case, if we consider the

peak value of the power losses during the transient period in Fig� 2 its value

will be much greater than in case 1�� It was noticed that the field regulator

attempts to establish a new steady-state optimal value for the rotor flux

linkage as quickly as possible and as a result uses a high magnitude of the

field-producing current and reaches its output almost in no time. This is the

main contribution to short-term high losses according to the stepwise

approach denoted in Fig. �a. This fact means that it is not profitable to use

solely the conventional flux controller in dynamic mode�� due to high

instantaneous power loss overshoots under changing torques and, in addition,

it leads to the increase of the total energy consumed per duty cycle. That is,

the peak power loss is much lower in case 1. This statement is also based on

the fact that by condition there is no change in the rotor flux linkage before

the change in load occurs. Thus, at the very first instance of time, the speed

controller sets up the torque-producing current for the value of the rotor flux,

which was optimal until any changes in the torque. 
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Figure 2 - a – power losses plot; b – rotor flux linkage trajectories 

 

As illustrated in Fig. 2 this peak in the power losses can be signifi-

cantly decreased by filtering the flux reference value using an appropriately 

chosen filter time constant. 

The main idea of the proposed method is to combine approaches 

stepwise and nominal using low-pass filtering of the rotor flux linkage 

reference, implemented by a first-order system in Fig. 4. In order to give the 

user an easy to apply design criterion the filter time constant is given as a 

fraction of the rotor time constant of the considered motor. As illustrated in 

Fig. 2 this approach reduces the peak power loss under a change in load torque 

on the shaft of the motor and it converges to the optimal steady-state value.  

Numerical study. Let us consider the impact of first-order filtering. To 

simplify the calculations, we will assume in the sequel that the flux regulator 

is fast enough such that the flux linkage follows its reference closely. In addi-

tion, assume that the speed and current controllers of field-oriented control 

have high enough performance to ensure the control characteristic close to 

perfectly rigid, that is, the dynamics of the stator phasor components is sig-

nificantly higher than the dynamics of the magnetic flux and speed. In this 

case, we can assume for the flux linkage dynamics the first-order differential 

equation: 
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and its input receives a step signal ss
2,ref 2,opt( ) 1( )t tΨ = Ψ ⋅  with ss

2,optΨ  as a

reference signal corresponding to new operating conditions. The task is to

find the time evolution of the outputs 2( )tΨ , which in this case is a step re-

sponse. Let us solve this problem with the help of transfer functions and sig-

nal images according to Laplace transform. Applying the Laplace transform to

the left and right sides of (10), assuming that all the initial conditions are

zero. The resulting equation is a complex function with a complex variable of

the input X[s] and output Ψ[s]: 

 1 1[ ] [ ] [ ]s s s X s
T TΨ Ψ

Ψ + Ψ = . (11) 

Thus, under zero initial conditions, the output of the object is

calculated as the product of its transfer function by the image representation

of the input 

 
ss ss
2,opt 2,opt ss

2,opt
1 1[ ] [ ] [ ]

1 1
s W s X s

T s s s s TΨ Ψ

Ψ Ψ
Ψ = ⋅ = ⋅ = −Ψ

+ +
. (12) 

Now, using the principle of superposition for images, we calculate the

original output signal:

 
ss 1 ss 1

2 2,opt 2,opt

ss
2,opt

1 1( )
1

1 exp[ / ]

t L L
s s T

t T

− −

Ψ

Ψ

  Ψ = Ψ −Ψ =   +   
= Ψ − −  

. (13) 

The solution of this differential equation for non-zero initial conditions

is given by 

 ss
2 2 2,opt( ) (0)exp[ / ] 1 exp[ / ]t t T t TΨ ΨΨ = Ψ − +Ψ − −   . (14) 

From this point, the expression (14), as well as new stator phasor com-

ponent dynamics, are substituted into the time integral of power losses that is 

the energy loss 
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with T as the duration of the transient process. The example of calculated tra-

jectories for an 11-kW motor is shown in Fig. 3. The duration of transients was 

chosen 1.4 sec.  

 
Figure 3 - Calculated trajectories for loss energy: a – step decrease; b – step 

increase for an 11-kW motor 

 
Figure 4 - Control structure 

 

The first example was done for different load steps with decreasing 

load from 100 % and below to 25 % of the nominal motor torque. The results 

for the loss of energy are given in Fig. 3a. The first test was performed for dif-

ferent load steps with increasing load from 25 % up to 100 % of nominal motor 

torque. The obtained values of the energy losses as a function of k are pre-

sented in Fig. 3b. It can be seen that for different load change conditions there 

is an appropriate minimizing vale for the multiplier k. To sum up, the most 

reasonable choice is in bounds [0.5 1]k∈ . 

Adaptive line search. In contrast to [7], where filter time constant with 

factor k had fixed value over wide operation range, it is suggested in the 
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current paper to effectively search the minimum point of the loss trajectories

at each sampling period. According to the extreme value theorem in a formu-

lation due to Weierstrass, a real-valued function J is continuous on the closed

interval [0.5 1]k∈ , then J attains its maximum and a minimum, each at least

once.  

Expression (15) is the one-dimensional case k∈ℝ . Then the function

:J →ℝ ℝ , the derivative of which is complicated or unknown. To find the op-

timal value of factor k, it is necessary to solve the problem of unconditional

minimization minJ → , taking into account that the function has a single

minimum (concave) on the closed interval [0.5 1]k∈ . It is assumed that the

function is being positively defined ( )J k +∈ℝ . One of the most common search

methods is the gradient descent method, which is formulated in a continuous

time frame as follows: 

 
x

dfx k
d

= −ɺ  (16) 

with 0k >  as a constant value. 

Denote y (x)f=  and xmin – minimum value of the function f on a

closed interval [a, b], (x) xf df d=ɺ . Let us prove that the method converges to

a local minimum. For this purpose, a following Lyapunov function 2(y)=yV .

Obviously, (y)V +∈ℝ . Differentiation over time gives 

 2(y) 2y y=2y (x)x=-2 (x) [ (x)]V f k f f= ⋅ ⋅ ⋅ ⋅ɺ ɺɺ ɺ ɺ , (17) 

(y)<0Vɺ  everywhere, except min miny (x )f=  where min(x ) 0f =ɺ  and

min(y )=0Vɺ . Thus, following the definition of stability according to Lyapunov,

point minx , i.e. the optimal value of k  is stable. 

The search for the minimum point of the loss trajectories (Fig. 3) is

done by means of a 1-D search method. At each sampling period, the golden

section method is applied to search the loss-minimizing factor k, which

represents the fraction of the rotor time constant.

Findings. A loss-minimizing flux control method based on filtering

the rotor flux linkage reference for the flux regulator has been proposed in

this paper. The main idea is to determine an appropriate filter time constant
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as a fraction of the rotor time constant using a multiplier k by means of a 1-D 

search method taking into consideration the main inductance saturation. The 

result of a numerical study shows that the optimal value of the multiplier k is 

in a range between 0.5 and 1. This solution is simple to implement and can be 

easily integrated into existing inverters, and not less importantly, the same 

algorithm is used both to minimize power loss in statics and dynamics when 

load and speed conditions are changing. 
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Регулятор безперервної оптимізації енергоефективності  
в векторно-керованих асинхронних приводах 

У цій роботі розглядається адаптивний вибір постійної часу фільтра для фільтра-
ції стаціонарного сигналу завдання потоку ротора в задачі енергоефективного керуван-
ня асинхронними машинами з векторним керуванням в перехідних режимах, коли умови 
навантаження та швидкості змінюються з урахуванням ефекту основного насичення ма-
гнітопроводу. Показано, що при належному керуванні швидкістю зміни потоку ротора 
втрати енергії за повний цикл роботи при зміні крутного моменту можна значно змен-
шити порівняно зі звичайними випадками. Аналіз відповідного вибору постійної часу фі-
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льтра як частки постійної часу ротора базується на чисельному дослідженні та резуль-
татах моделювання для трьох різних індукційних машин з різною потужністю. 

A continuous energy-efficiency optimization controller  
for field-orientation induction motor drives 

Abstract. The current paper discusses the adaptive choice of a filter time constant for fil-
tering the steady-state flux reference in the energy-efficient control problem of field-orientation
induction machines in transient behavior when load and speed conditions are changing taking
into account the effect of the main induction saturation. It is shown that by appropriately man-
aging the flux linkage rate of change the energy losses per full operation cycle under torque
changes can be significantly reduced compared to the conventional cases. The analysis for the
appropriate choice of the filter time constant as a fraction of the rotor time constant is based on
a numerical study and simulation results for three different induction machines with different
rated powers. 
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