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STATISTICAL PREDICTION OF THE RELIABILITY OF COMPOSITE MATERIALS
WITH DISPERSIVE INCLUSIONS

© R. Baitsar, R. Kvit, A. Malyar

3anpononosano ancopumm po3paxyHKy HAOIUHOCMI (UMOGIPHOCMI PYUHYSAHHS) KOMROZUMHUX Mamepianie 3i
CMOXACMUYHO PO3NOOINEHUMY OUCHEPCHUMU BKTIOUEHHAMU 3d YMO8 CKIAOHO20 Hanpyscenozo cmauy. Posens-
HYmMo 0emepMiniCImudHuLl Kpumepitl pyUuHy8anHa KOMROZUMA MUNY 3AKOHY KYIOHIBCLKO20 Mepmsi 31 34eNIeHHAM.
Ompumano GynKyiro posnooiny pyuHieHo20 HABAHMAICEHHA KOMNO3UMA, KA € OCHOBOI0 O 3anNUCy CMamuc-
MUYHUX XApaKmepucmuk miynocmi i Hadiinocmi mamepianis. Pospaxosani i nobyooeani diazpamu 3anexcnocmi
8i0 NPUKIAOEHO20 HABAHMAIICEHHS UMOGIPHOCII PYUHYBAHHS NIOCKO20 KOMNO3UMHO20 3PA3KA 3 PISHUMU CIPY-
KMYpPHOIO HeOOHOPIOHICMIO Mamepiany ma KilbKiCmio 8KI04eHb

Knrwuosi cnosa: xomnosumnuil mamepian, iMOSIpHICINb PYUHY8AHHA, (YHKYIA pO3NnoOiny, pyiHieHe HABAHMA-

IHCEHHA, OucnepCHi BKJIIOYEeHHA

1. Introduction

Construction of failure mathematical models of
structural elements from composite materials is the sub-
ject of intensive and versatile research. The composite re-
liability depends on various probabilistic factors. For the
descriptive parameters of a composite material structure,
randomness is characteristic, certain laws of probabilistic
distribution. Therefore, the problem of the composite ma-
terials strength and reliability calculating using stochastic
modeling is an actual problem. A joint consideration of
defect and structure randomness allows for a more accu-
rate assessment of their strength and reliability. For mod-
ern statistical approaches to the failure problem of com-
posite materials is characterized by the tendency to fuller
use the results of deterministic theories of the defects in-
fluence on the strength and conditions of defects such as
cracks propagation.

2. Literature review

The complex application of composite materials
failure deterministic mechanics and probabilistic statisti-
cal methods is considered in a number of authors’ works.
In particular, the paper [1] presents a state-of-the-art re-
view of ultimate strength prediction and reliability analy-
sis for composite material structures with emphasis on
laminated composite structures. In [2] a numerical simu-
lation and analytical probabilistic methods for the relia-
bility evaluation of composite structures are considered.
The author [3] proposed a mechanical multi-scale model
describing relationship between the crack-opening and
composite bridging stress in brittle matrix composites
with heterogeneous reinforcement. The work [4] con-
cerned with a statistical distributions of the critical frac-
ture toughness values with due consideration given to the
scale size effect. Experimental investigations of the com-
posite glass fiber materials tensile strength and the statis-
tical analysis of the results obtained on the basis of the
two-parameter Weibull distribution have been carried out
in [5]. According to the experimental results, a probabil-
ity analysis was conducted on the degradation of tensile
strength [6].

3. The aim and objectives of research

The aim of research is calculation and analysis of
the reliability (probability of failure) under certain load-
ing conditions of composite materials specimens with
different numbers of randomly distributed elliptic disper-
sive inclusions that do not interact with each other.

To achieve this aim, the following objectives need
to be solved:

— determine the failure criterion of a composite
material with elliptic dispersive inclusions in the condi-
tions of a complex stress state;

— choose the distribution laws of statistically in-
dependent geometric parameters of inclusions;

— obtain the failure loading distribution function
for a composite material element with one inclusion;

— calculate and construct the diagrams of depend-
ence on the applied loading of failure probability of a flat
composite sample with different structural material het-
erogeneity and different number of inclusions.

4. Probability of failure calculation method for
the composite material with randomly distributed
dispersive inclusions

Let’s consider a flat macro-element of a compo-
site material that is an elastic homogeneous matrix in
which are evenly distributed N elliptic inclusions from
another elastic material that do not interact with each
other. The macro-element is under the conditions of uni-
formly distributed forces P and Q =#P which can be

considered as the main stresses for a flat stress state (Fig.
1). The elastic properties of the matrix and inclusions are
given (the properties of all inclusions are the same), that
is, the material is two-component. Let’s believe that the
inclusions are soft and have the form of flattened ellipses
(6=2b/(a+b)~2b/a, b<<a, a and b are the semi
axes of ellipse). The influence of such inclusions on the
strength is quite significant, because high local stress con-
centrations arise near their edges [7]. The geometric pa-
rameters of the inclusions (0 and orientation angle « )
are statistically independent random variables.
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The stress state in the inclusion is homogeneous,
therefore, we assume that the failure of composite mate-
rial starts in the inclusion (in it a crack which has a
length 2a is formed). Cracks may occur across the in-
clusion, but the most dangerous are longitudinal. The
composite strength is determined by the strength of its
weakest element (the hypothesis of the weakest link).
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Fig. 1. Macro-element of composite material with
randomly distributed elliptical inclusions

Let’s consider the composite material to be mac-
ro-isotropic (all possible orientations of inclusions are
equally probable). Then the distribution of the random
variable « will be uniform and has a probability density
distribution f(a)=2/7 (—x/2<a<7x/2). The prob-
ability density distribution of a random variable & we
write the g -law [8]

f(5) =

11 97% | (5 <s5<5) @)
51_50 51_50

where ¢, is a minimum, ¢, is a maximum value of

the parameter &, r>0 is a parameter of the material
structural heterogeneity. With increasing r let’s ob-
serve an increase in the probability of meeting small
values of a random variable & (decrease in the size of
inclusions).

According to (1) the integral probability distribu-
tion function of random variable &

8-,
51_50

F(5)=1—[1 J (5,<5<68). (2

The mean value of the random variable ¢ is de-
termined as follows:

O, + 0,
o)y=-"12, 3
(0)="13 3)
In accordance with the above assumption of the

inclusions form, let’s consider that 0<6<0,5. Then
from the expression (3) obtain
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1
(9)= 2r+2)

(4)

The composite material heterogeneity of the
structure is characterized by the joint probability dis-
tribution density of independent random variables
a and o

Ha.0) =@ f©) =D 257,
T

Graphs of the joint probability distribution density
(5) for some parameter values r are shown in Fig. 2.
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0 0,1 02 03 04 05 5
Fig. 2. Joint probability distribution density f(«,d) for
different parameter values r

At r=0 distribution (5) becomes a uniform
one. At r =1 have a linearly decreasing distribution. It
is seen from the constructed curves that with the in-
creasing of the parameter r, the probability of a meet-
ing of random variables &, which are close to zero,
increases.

Let’s denote by indices 1 and 2 the values that are
related respectively to inclusion and matrix.

Let’s accept as a deterministic failure criterion for
the inclusion a condition of a Coulomb friction law with
clutch type [9]

rinKl—oitgpl, (6)

1

1
where Oy Ty

are the stress in inclusion, K* is a clutch

coefficient, tgp" is a coefficient of material inclusion in-

ternal friction.

The stress in inclusion, which inclines at an an-
gle a to the main axis (Fig. 1), is determined by the
formulas [8]

ol = 0,5P(r7+1+(1—17)cos2a) G, (L+ 5,) 1+ 5,)
Y G, 1+ 2)(A+2,) + 256G, (5, —1)

A 0,5P(1-7)sin2a G,(1+ 5,)
v G, (1+52,) +25G,

: ™
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where G,,G, are the shear modules (G, /G, <1), s,
», are the elastic constants, which are expressed in

terms of Poisson's coefficient v (¢ =:1°)_—V for a plane
+Vv

stress state, s =3—4v for a plane deformation).

In accordance with the failure criterion (6) — (7),
after conducting elementary transformations and neglect-
ing the terms of order G/ /G?, let’s obtain the following
expression for loading calculating, at which a crack with
the length 2a is formed:

K'L(D +5M)

P= —, (8)
B(n+1+(@—n)cos2a)+C(L-n)sin 2«

where

B = (L+ )ty 0",

C=s,-1

D =41+ 5c,),

L 4 M= CG, .
1+, G,

The value of the parameter 6 that corresponds to
the given failure loading P (P,, <P<P_) is deter-
mined as follows:

_ P(B(n7+1+(1-n)cos2a)+C(1—n)sin 2a) — K'LD

5 1
K'LM

The dependence of the failure loading P on the
angle of inclusion orientation « and the correlation
n=Q/P isshown in Fig. 3.

Its minimum value

K'LD

Pmin =
|3(77+1)+(1—77)\/B2 +C?

is reached at the orientation angle

(10)

a. =0,5arctg 5
B

and parameter &, =0.
Maximum value for biaxial tension

5 _ KL(D+0,5M)

11
T ay

is realized at the parameter ¢, =0,5 and angle a=7/2.

The maximum value P —o for tension-com-
pression is reached at &, =0,5 and angle

T .
A = E_ 0,5arcsinx

. B(~C(7+1))++/C*(n+1)> —4(B* +C*)p

. (12
(B*+C*)(A-7) (2
For o =0 loading is equal
K!L(D+6M)
R=——
2B
(13)
For a =z /4 we obtain a loading
__K'L(D+5M) (14)
* B(r+D)+CQ-7n)
P Ar
Bl
B
Pmin“—
0 a o on/d a, n/2
a
PT
B
B
min| /2 1 0 W
0 % i mid r2 &
b

Fig. 3. Range of failure loading change: a — biaxial ten-
sion; b — tension-compression
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The following orientation angles corresponds to
the given failure loading P (P,, <P<P_) and ratio

in

ﬂz
FP..f. )= [ (1-20(P.n.c)) da. (20)

T

n=Q/P: A
Taking into account
o = the notation (20) and the rela-
2 2 2, ~2y (T2 2 tionship (10)—(17), the integral
— 0.5arcsin C(T- 8(77+1))_\/C (T-B@+D)) -(B*+C )(T +4B ”_ZTB(””)) distribution function (19) for a
' (B +C*)(1-7) ' composite element with one
inclusion is written as follows:
where — for biaxial tension (0<#7<1)
K'L(D+5M N
T:%’ F(Pin!allaz)! PmmSPSF’l(77¢O),
=4F(P,7,0,0))+F(P,n,zl4,c;), B <P <P, (n#1); (21)
(0<e, <a., P, <P<P); (15) F(P,n,a,,712), P,<P<P_ (n#0);
a, = . .
- —for tension-compression
Cc(T- |3(77+1))+\jcZ (T-B(7+1) —(B*+C*)(T* +4B’n - 2TB(n +1))
= 0,5arcsin

(B*+C*)(1-n)

(O!*SCZZSH/LI., l:)minSF)SPZ); (16)
T

aazg—al

(%3“3 3%: P, <P <P, (biaxial tension),

Zsa:isz_a**y

42 (17)

P, < P <o (tension-compression).

The failure loading for a composite element with
one inclusion is a random variable having an integral dis-
tribution function F(P,7), which can be written simi-

larly to the results of [8] as follows:

R =2 [(1-FEPna)da  (8)

where the parameter 5(P,7,«) is determined from (9).
The integration area S, depends on the ratio 7 of the

applied loading.

Taking into account the expressions of the integral
distribution functions (2), (18) and the range of variation
of the random variable ¢ , we obtain

© (e <p<0)

R(P.n)=

F(P,n,a,2,), P, <P<P;

F(P,7,0,a)+F(P,n,7/4,a;), B <P <P, (n#-1); (22)
F(P’n,aslﬁlz_aﬁ), P2 < P<OO(77¢—1)_

Let’s note separately the case of biaxial symmetric
tension (=1, P=Q>0). Considering normalization

condition for density f («) , we obtain from formula (21)

F(P,) =1-(1-25(P,n,@)) ",

Pin<P<P.. (23)
The failure probability of a composite material
macro-element containing N inclusions is determined

[10] as follows:

P, =1-(1-F(P,n)", P,

min

<P<P.,- (24)

Substituting in formula (24) expressions of failure
loading distribution function (21) — (23), let’s obtain a ra-
tio for determining the failure probability of the consid-
ered composite material with different number of inclu-
sions and different structural heterogeneity for given ra-
tios of the applied loading:

— for biaxial tension (0<7 <1)

) 1-(1-F(P,n,a,@,))", Py <P <P (7 #0);
AP =" [0-25Pna) da B _li-(1-F(P.7.0.0)-F(P. 7/ 4.a)", B <P <P 1); (25)
sa
(0<5<0,5). (19) 1-(1-F(P.n,a;,712))" , B, <P <P, (1 +0);

Let’s introduce the notation
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— for tension-compression (—o <77 <0)
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(1-F(P..c5,0,))" Py <P <P;

mi

_’]__
P = 1—(1—F(P,T],O,O(l)—F(P,T],7Z/4,0(3))N , B<P<P(n=-1); (26)
1-(1-F(P,n,a, 71 2-a..))" , P, <P <oo(n = -1).

In particular for biaxial symmetric tension
r1\N
P =1—((1—25(P,77,a)) 1) ,

P <P<P_. @7)

min —

In the expressions for the loading let’s introduce
instead of the parameter & its mean value (&) (formula
(4)) and carry out the replacement of the variable
p=P /K" (introduce a dimensionless loading).

Let’s write the expressions to determine the prob-
ability of failure for single cases of the applied loading
ratio.

Probability of failure for biaxial symmetric ten-
sion (n=1)

r+\N
ple_{[l_zwj J |
LM

pmin < p < pmax' (28)

Probability of failure for uniaxial tension (7 = 0)

@ 2 . _ r+l
3 1_EJ~ 1-2 p(2Bcos” a +Csin2a)—LD deo—
LM

Tz LM
pmin S p S p2' (29)

zl4

o 2 . _ r+l N
2 J-[l_zp(ZBcos a+Csin2a) LD] da} '

/A
1,0

0,8

0,6

0,4

0,0

Probability of failure for tensile-
compression (net shear) (7 =-1)

P, =1-

a - r+1 N
_(1_2J-(l_ZZp(BCOSZa+CSIn2a) LD) da] |
LM

x

pmin < p < p1 (30)

Let’s consider approbation of the obtained analyt-
ical results. In accordance with [11] and physical consid-
erations, let’s take the following values of material con-
stants (disperse composite of gray cast iron type):

G,/G,=0,081,

G,;~4,4-10"MPa,

v, =v,=0,25,

tgp' =0,6,

2, =2, = 2,2 (plane stress state).

Conduct numerical research of the dispersive
composite material probability of failure by formulas
(28)—(30) and analyze its diagrams for the different mate-
rial structural heterogeneity (parameter r) and the dif-
ferent number of inclusions (parameter N ).

Fig. 4 shows a disperse composite probability of
failure diagrams with different number N of inclusions
at r=1 for the following types of loading: biaxial sym-
metric tension (7 =1), uniaxial tension (r =0), tensile-
compression (r7=-1).

In Fig. 5 the dependence of the dispersive compo-
site probability of failure on the number of inclusions
(the dimensions of the composite) and the material struc-
tural heterogeneity for given loading (p=2,4) are in-
vestigated.

The influence of loading types and material struc-
tural heterogeneity on the dispersive composite probabil-
ity of failure in its fixed dimensions (N =50) are ana-
lyzed in Fig. 6.
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Fig. 4. Probability of failure for different types of loading (solid for 7 =0, dashed for 1 =1, dotted dashed for n=-1)
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Fig. 6. Probability of failure for various material structural heterogeneity (solid for 7 =0, dashed for 7 =1, dotted
dashed for n=-1)

5. Research results

Fig. 4 observes the dependence of the probabil-
ity of failure on the type of stress state (from 7). The
probability of failure increases with the increase in the
number of inclusions N for a fixed loading. At a cer-
tain loading range we observe a small probability of
failure.

Fig. 5 shows the dependence of the probability
of failure on the material structural heterogeneity (pa-
rameter r) and the number of inclusions for different
types of applied loading. Each structural material het-
erogeneity and the loading level correspond to the
composite dimensions, which increases the probability
of failure.

In Fig. 6 the influence of a composite material
structural heterogeneity on different types of loading in
the case of its fixed sizes (fixed number of inclusions) is
analyzed. With an increase of the parameter r at a fixed
loading, the probability of failure decreases, which we
observe for each type of stress state.

Similar statistical pattern are observed in [12]
when calculating the reliability (probability of failure) of
orthotropic composite materials with uniformly distribut-
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ed defects such as cracks that have a prevailing orienta-
tion in the direction of reinforcement.

6. Conclusions

1. Written failure criterion of composite material
with elliptic dispersive inclusions in a complex stress
state allows to investigate the reliability of composite
material, taking into account the stochastic nature of its
structure.

2. Selected distribution laws of the statistically in-
dependent inclusions geometric parameters o and 6 make
it possible to write the failure loading distribution func-
tion Fy(P,5) for a composite element with one inclusion.

3. The received failure loading distribution func-
tion Fy(P,n) for a composite element with one inclusion
has all the properties of a random variable integral distri-
bution function and is the basis for obtaining a number of
strength statistical characteristics.

4. The constructed diagrams of the probability of
failure P; of the composite sample allow to investigate its
dependence on the material structural heterogeneity (pa-
rameter r), its dimensions (number of inclusions N), and
the type of stress state (parameter 7).
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