UDC 615.322: 582.916.21 DOI: 10.15587/2519-4852.2020.221078

THE STUDY OF CARBOXYLIC ACIDS IN FLOWERS AND LEAVES OF *VERONICA CHAMAEDRYS* L. AND *VERONICA TEUCRIUM* L.

A. Kovaleva, T. Ilina, A. Raal, A. Osmachko, O. Goryacha, Ya. Rozhkovskyi

The aim. The genus Veronica (Veronica L.), family Plantaginaceae Juss. in the flora of Ukraine is represented by 64 species; Veronica chamaedrys L. and Veronica teucrium L. are widespread in the Kharkiv region. Plants are used in folk medicine as expectorants, anti-inflammatory, diaphoretic, anti-allergic, choleretic, antispasmodic, anticonvulsant, diuretic, sedative, wound healing and antibacterial agents. The aim of this work was to study the carboxylic acids of flowers and leaves of Veronica chamaedrys L. and flowers and leaves of Veronica teucrium L.

Materials and methods. The objects of the study were flowers and leaves of Veronica chamaedrys L. and Veronica teucrium L., harvested in the flowering phase in 2018 in Kharkiv region, Ukraine. The study of carboxylic acids was performed by chromatography-mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph with a 5973N mass spectrometric detector. Identification of acid methyl esters was performed using data from the mass spectrum library NIST 05 and Willey 2007 in combination with programs for the identification of AMDIS and NIST; also compared the retention time with the retention time of standard compounds.

Results. In the flowers and leaves of Veronica teucrium L. 35 carboxylic acids were identified, the total content of which is 5.55 % and 2.93 %, respectively. 31 and 32 carboxylic acids were identified in the flowers and leaves of Veronica chamaedrys L., their total content is 5.39 % and 7.45 %, respectively.

Conclusions. It is established that the flowers and leaves of Veronica chamaedrys L. are characterized by a higher content of carboxylic acids compared to the flowers and leaves of Veronica teucrium L. As chemotaxonomic markers of flowers and leaves the following compounds can be used: α -furanic acid for Veronica chamaedrys L.; veratric, 4-hydroxybenzylacetic and syringic acids for Veronica teucrium L. The obtained results will be the basis for further chemotaxonomic studies

Keywords. Veronica chamaedrys L., Veronica teucrium L., carboxylic acids, chromatography-mass spectrometry

Copyright © 2020, A. Kovaleva, T. Ilina, A. Raal, A. Osmachko, O. Goryacha, Ya. Rozhkovskyi. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

1. Introduction

The genus Veronica (*Veronica* L.) of the family *Plantaginaceae* Juss. is widespread and represented in the world flora with more than 300 species [1, 2]. 64 wild species grow on the territory of Ukraine and are cultivated as fodder and ornamental plants, have many varieties and hybrids, which differ mainly in the size of inflorescences and colour of flowers [3]. *Veronica chamaedrys* L. and *Veronica teucrium* L. of *Chamaedrys* Griseb. section are widespread in the Kharkiv region.

In folk medicine, the herb is used, much less often the flowers or rhizomes of both *Veronica* species as expectorant, anti-inflammatory, diaphoretic, antiallergic, choleretic, antispasmodic, anticonvulsant, diuretic, sedative, wound healing and antibacterial agents [4].

Experimental studies of the activity of substances from the herb *Veronica teucrium* L. were done. Thus, *in vitro* experiments have shown that water-acetone extract from this raw material inhibits the enzymes cyclooxygenase-1 and 12-lipoxygenase. Anti-inflammatory activity is positively correlated with the content of phenolic compounds, in particular baicalein, quercetin, hyperoside, isoquercetin, chlorogenic acid [5, 6]. It was found that antibacterial activity against *S. aureus* and *E. coli* is shown by aqueous extracts containing free polyphenols, hydroxycinnamic acids and extracts containing the sum of iridoids [7, 8].

It is known that species of the genus *Veronica* L. contain iridoids [9, 10], flavonoids and phenylpropanoids [11], carboxylic acids [12, 13].

In the raw material of *Veronica chamaedrys* L. iridoids [14], ascorbic acid, hydroxycinnamic acids: chlorogenic, rosemary, *p*-coumaric, caffeic and ferulic [15, 16]; fatty carboxylic acids: myristic, palmitic, stearic, linoleic, linolenic, arachidonic, lauric and palmitoleic [17]; flavonoids: apigenin, luteolin, chrysoeriol, pectolinarigenin and 3,4-dimethylluteolin [18, 19] were found.

Veronica teucrium L. herb contains malic, citric, tartaric, lactic, ascorbic acid; phenolic carboxylic acids: *p*-hydroxybenzoic, 2,5-dihydroxybenzoic (gentisin), phenylacetic, protocatechuic, gallic, vanillic, syringic [20, 21]; alicyclic acids: quinine, shikimic; hydroxycinnamic acids: *p*-coumaric, caffeic, rosemary, ferulic, chlorogenic, sinamic, isochlorogenic and neo-chlorogenic; flavonoids: apigenin, luteolin, baicalein, hyperoside, isoquercetin, methoxidized flavones: hispidulin and eupatorin; steroids: β -sitosterol, campesterol and stigmasterol [6, 7].

The aim of this work was to study the carboxylic acids of flowers and leaves of *Veronica chamaedrys* L. and flowers and leaves of *Veronica teucrium* L. to identify potential chemotaxonomic markers of species and to establish the theoretical possibility of their use to correct the metabolic syndrome.

2. Planning (methodology) of the research

In Fig. 1 a graphical representation of the research planning process is shown.

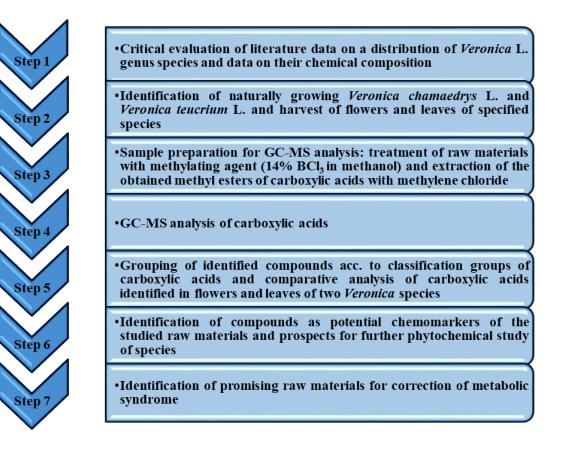


Fig. 1. Planning of the research

3. Materials and methods

The objects of the study were flowers and leaves of *Veronica chamaedrys* L. and *Veronica teucrium* L., harvested in the flowering phase in June 2018 (Kharkiv region, Ukraine). Herbarium specimens №№ 030602018-10062018 are stored at the Department of Pharmacognosy (National University of Pharmacy, Kharkiv, Ukraine). Identification of species was carried out with the advisory assistance of the Head of the Department of Botany of the National Pharmaceutical University, Doctor of Pharmaceutical Sciences, professor Gontova Tatyana Nikolaevna.

Studies of carboxylic acids of air-dry raw materials were performed by chromatography-mass spectrometry on a chromatograph 6890N MSD/DS Agilent Technologies (USA) with a mass spectrometric detector

5973N according to the previously described method [20, 21]. Identification of acid methyl esters was performed based on the calculation of the equivalent length of the aliphatic chain (ECL) using data from the mass spectrum library NIST 05 and Willey 2007 in combination with programs for the identification of AMDIS and NIST; also compared the retention time with the retention time of standard compounds (Sigma).

4. Research results

As a result of the study, 32 carboxylic acids in flowers and 31 carboxylic acids in the leaves of *Veronica chamaedrys* were identified and quantified; 35 carboxylic acids were identified and quantified in the flowers and leaves of *Veronica teucrium* (Fig. 2–5, Table 1).

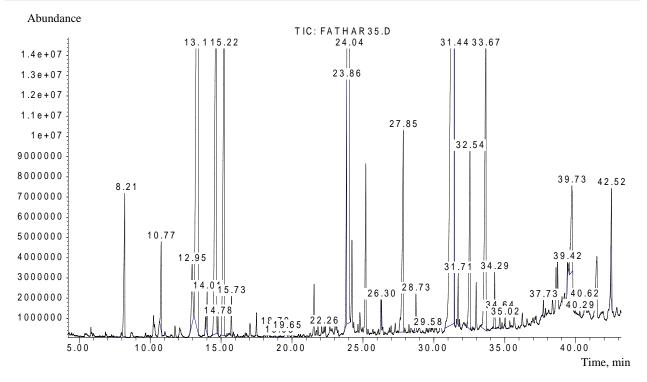


Fig. 2. Chromatographic profile of methyl esters of carboxylic acids of Veronica chamaedrys flowers

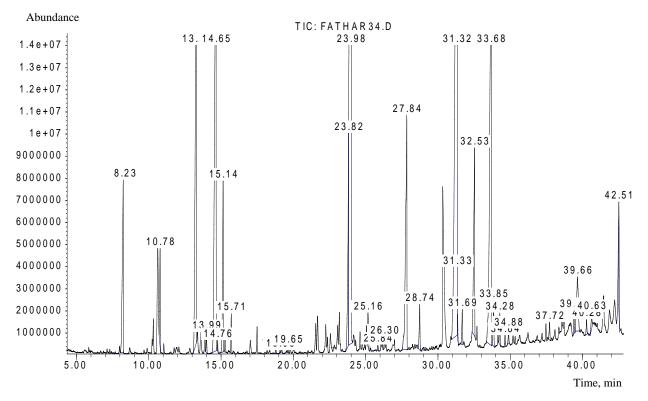


Fig. 3. Chromatographic profile of methyl esters of carboxylic acids of Veronica chamaedrys leaves

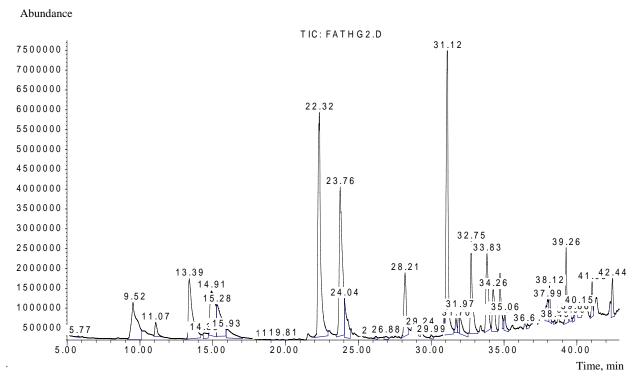


Fig. 4. Chromatographic profile of methyl esters of carboxylic acids of Veronica teucrium flowers

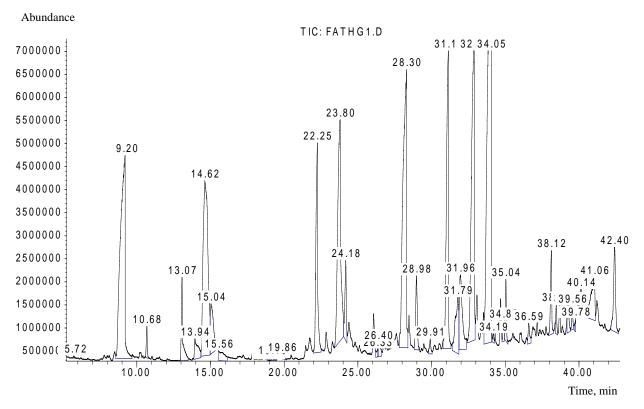


Fig. 5. Chromatographic profile of methyl esters of carboxylic acids of Veronica teucrium leaves

Carboxylic acids of flowers and leaves of Veronica chamaedrys and Veronica teucrium

Table 1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 10 \\ 10 \\ 1$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	leaves * mg/kg * 10 1475.19± ±33.12 - 118.23± ±3.10 462.99± ±13.88 3188.84± ±95.64 276.26± ±8.28 570.76± 570.76±	%** 11 5.03 - 0.40 1.58 10.87						
0. Content mg/kg * $\frac{9}{8**}$ mg/kg * $\frac{9}{6**}$ mg/kg * $\frac{9}{6**}$ 1 2 3 4 5 6 7 8 9 Low molecular weight aliphatic acids 1 2-Hydroxy-3- methylpentanoic 1064 1078.83±31.94 1.45 - - 9598.09± ±238.72 17.25 2 α -Furoic (furan-2- carboxylic) 1086 120.36±3.12 0.16 55.75± ±11.38 0.10 - - - 3 Oxalic (ethanedioic) 1359 854.75±23.45 1.15 594.46± ±17.46 1.10 ±16.72 ±16.72 0.95 4 Malonic (propanedioic) 1477 9177.97±240.42 12.32 4883.63± ±136.75 9.06 ±15.37 ±115.37 6.95 5 Levulinic (4-oxopentanoic) 1501 7047.00±197.31 9.46 6764.58± ±162.06 12.55 ±11.21 6.38 6 Fumaric (trans- butenedioic) 1516 352.17±9.22 0.47 ±3.81 0.24 ±8.78 0.63 7 Succinic (butanedioic) 1575 5426.62±15	* mg/kg * 10 1475.19± ± 33.12 - 118.23± ± 3.10 462.99± ± 13.88 3188.84± ± 95.64 276.26± ± 8.28 570.76±	%** 11 5.03 - 0.40 1.58 10.87						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} & 10 \\ \hline & 10 \\ \hline & 10 \\ \hline & 10 \\ \pm 33.12 \\ \hline & - \\ \hline & 118.23 \pm \\ \pm 3.10 \\ 462.99 \pm \\ \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	11 5.03 - 0.40 1.58 10.87						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} & 10 \\ \hline & 10 \\ \hline & 10 \\ \hline & 10 \\ \pm 33.12 \\ \hline & - \\ \hline & 118.23 \pm \\ \pm 3.10 \\ 462.99 \pm \\ \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	5.03 - 0.40 1.58 10.87						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \pm 33.12 \\ - \\ 118.23 \pm \\ \pm 3.10 \\ 462.99 \pm \\ \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	- 0.40 1.58 10.87						
1 methylpentanoic 1064 1078.83 \pm 31.94 1.45 - - \pm 238.72 17.25 2 α -Furoic (furan-2- carboxylic) 1086 120.36 \pm 3.12 0.16 $55.75\pm$ \pm 1.38 0.10 - - - 3 Oxalic (ethanedioic) 1359 854.75 \pm 23.45 1.15 $594.46\pm$ \pm 17.46 1.10 $530.22\pm$ \pm 16.72 0.95 4 Malonic (propanedioic) 1477 9177.97 \pm 240.42 12.32 4883.63 \pm \pm 136.75 9.06 $3858.87\pm$ \pm 115.37 6.95 5 Levulinic (4-oxopentanoic) 1501 7047.00 \pm 197.31 9.46 6764.58 \pm \pm 162.06 12.55 $\frac{3542.82\pm}{\pm$ \pm 111.21 6.38 6 Fumaric (<i>trans</i> - butenedioic) 1516 352.17 \pm 9.22 0.47 131.38 \pm \pm 3.81 0.24 $\frac{347.21\pm}{\pm 8.78}$ 0.63 7 Succinic (butanedioic) 1575 5426.62 \pm 152.95 7.28 1395.15 \pm \pm 39.06 2.59 $\frac{2411.81\pm}{\pm 6.9.92}$ 4.34	$\begin{array}{c} \pm 33.12 \\ - \\ 118.23 \pm \\ \pm 3.10 \\ 462.99 \pm \\ \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	- 0.40 1.58 10.87						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} \pm 3.10 \\ 462.99 \pm \\ \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	0.40 1.58 10.87						
3 Oxalic (ethanedioic) 1359 854.75 ± 23.45 1.15 ± 17.46 1.10 ± 16.72 0.95 4 Malonic (propanedioic) 1477 9177.97 ± 240.42 12.32 $\frac{4883.63\pm}{\pm 136.75}$ 9.06 $\frac{3858.87\pm}{\pm 115.37}$ 6.95 5 Levulinic (4-oxopentanoic) 1501 7047.00 ± 197.31 9.46 $\frac{6764.58\pm}{\pm 162.06}$ 12.55 $\frac{3542.82\pm}{\pm 111.21}$ 6.38 6 Fumaric (trans- butenedioic) 1516 352.17 ± 9.22 0.47 $\frac{131.38\pm}{\pm 3.81}$ 0.24 $\frac{347.21\pm}{\pm 8.78}$ 0.63 7 Succinic (butanedioic) 1575 5426.62 ± 152.95 7.28 $\frac{1395.15\pm}{\pm 39.06}$ 2.59 $\frac{2411.81\pm}{\pm 49.20}$ 4.34	$\begin{array}{r} \pm 3.10 \\ 462.99 \pm \\ \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	1.58 10.87						
4 Malonic (propanedioic) 1477 9177.97 ± 240.42 12.32 ± 136.75 9.06 ± 115.37 6.95 5 Levulinic (4-oxopentanoic) 1501 7047.00 ± 197.31 9.46 $6764.58\pm$ 12.55 $3542.82\pm$ ± 111.21 6.38 6 Fumaric (trans- butenedioic) 1516 352.17 ± 9.22 0.47 $131.38\pm$ 0.24 $\frac{347.21\pm}{\pm 8.78}$ 0.63 7 Succinic (butanedioic) 1575 5426.62 ± 152.95 7.28 $1395.15\pm$ 2.59 $\frac{2411.81\pm}{\pm 69.92}$ 4.34	$\begin{array}{r} \pm 13.88 \\ 3188.84 \pm \\ \pm 95.64 \\ 276.26 \pm \\ \pm 8.28 \\ 570.76 \pm \end{array}$	10.87						
5 Levulnic (4-oxopentanoic) 1501 7047.00 ± 197.31 9.46 ± 162.06 12.55 ± 111.21 6.38 6 Fumaric (trans- butenedioic) 1516 352.17 ± 9.22 0.47 131.38 \pm ± 3.81 0.24 $\frac{347.21\pm}{\pm 8.78}$ 0.63 7 Succinic (butanedioic) 1575 5426.62 ± 152.95 7.28 1395.15 \pm ± 39.06 2.59 2411.81 \pm ± 69.92 4.34 Malic (2 Malic (2) Malic (2) <thmalic (2)<="" th=""> Malic (2) Malic</thmalic>	±95.64 276.26± ±8.28 570.76±							
6 butenedioic) 1516 $352.1/\pm 9.22$ 0.47 ± 3.81 0.24 ± 8.78 0.63 7 Succinic (butanedioic) 1575 5426.62 ± 152.95 7.28 $1395.15\pm$ 2.59 $2411.81\pm$ 4.34 Malic (2 Malic (2)	±8.28 570.76±	0.94						
// Succinic (bitanedioic) 1575 5420.02 ± 152.95 7.28 ± 39.06 2.59 ± 69.92 4.34 Malic (2 11641.35± 7072.67±								
Malic $(2, 7072.67)$		1.94						
$\begin{bmatrix} 8 \\ hydroxybutanedioic \end{bmatrix} = \begin{bmatrix} 2008 \\ 2008 \\ 1195 \\ 7.8 \pm 558.15 \\ 16.05 \\ \pm 325.56 \\ 21.60 \\ \pm 198.01 \\ 12.72 \\ \pm 198.01 \\ \pm 198.01 \\ 12.72 \\ \pm 198.01 \\ \pm 1$	2656.96± ±77.10	9.05						
9 Azelaic (nonanedioic) 2114 203.29 \pm 6.10 0.27 $78.65\pm \pm 2.20$ 0.15 $151.79\pm \pm 4.25$ 0.27	±3.13	0.36						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	±04.32	8.12						
Sum: 58127.58 ± 161.47 78.03 $58127.58\pm\\ \pm 161.47$ 78.03 $37436.32\pm\\ \pm 113.47$ 69.45	36698.22± ±113.35	66.09						
Higher fatty acids								
11 Caproic (hexanoic) 1120 - - - $\frac{29.19\pm}{\pm 1.42}$ 0.09	± 0.43	0.03						
12 Lauric (dodecanoic) 1793 25.34 \pm 0.91 0.03 46.67 \pm 1.57 0.09 $\frac{25.81\pm}{\pm 0.94}$ 0.09	±2,02	0.19						
13 Myristic (tetradecanoic) 1994 826.8 ± 29.77 1.11 451.42 ± 16.25 0.84 $\frac{1556.96\pm}{\pm56.05}$ 2.80	± 15.07	1.43						
14 Pentadecylic (pentadecanoic) 2101 33.87 ± 0.94 0.05 - - $95.47\pm$ ±3.65 0.17	±1,32	0.12						
15 Palmitic (hexadecanoic) 2204 3068.63 ± 110.71 4.12 $\frac{3251.11\pm}{\pm 116.69}$ 6.03 $\frac{2349.43\pm}{\pm 84.58}$ 4.22	±140.85	12.63						
Palmitoleic 2223 378.23 ± 13.62 0.51 380.86 ± 13.71 0.71 $152.40 \pm \pm 5.48$ 0.27	±17,96	1.61						
17 Margaric (heptadecanoic) 2292 29.81 \pm 0.54 0.04 - - $\frac{128.66\pm}{\pm 0.56}$ 0.23	± 0.68	0.28						
18 Stearic (octadecanoic) 2384 530.92 \pm 19.24 0.71 184.38 \pm 6.63 0.34 $\frac{351.11\pm}{\pm 12.64}$ 0.62	± 26.06	2.34						
19 Oleic (cis-9-octadecenoic) 2402 389.15 ± 20.17 0.52 275.73 ± 10.48 0.51 $\frac{954.19\pm}{\pm 34.35}$ 1.72	± 32.38	2.90						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±125.67	11.27						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 209.70	18.80						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±3.45	0.31						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±9.19	0.94						
24 Heneicosanoic 2597 $ \frac{120.13\pm}{\pm 1.64}$ 0.22	±4.65	0.42						
25 Behenic (docosanoic) 2698 138.81 \pm 5.27 0.19 $\frac{142.10\pm}{\pm 5.11}$ 0.26 $\frac{671.92\pm}{\pm 24.19}$ 1.21	± 14.64	1.39						
26 Tricosanoic 2743 - - - $\frac{130.02\pm}{\pm 4.68}$ 0.23	±3.12	0.35						
27 Lignoceric (tetracosanoic) 2843 67.71 ± 2.57 0.09 $\frac{159.84\pm}{\pm5.75}$ 0.30 $ -$ 13564.851 13564.851 13250.644 13250	619.32± ±19.82	2.11						
Sum: 13187.17 ± 22.08 17.70 13564.85 \pm ± 41.73 25.16 13059.64 \pm ± 37.84 23.5 Aromatic acids	±41./3 ±37.84 ±36.88							
Derivatives of benzoic acid								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	192.84± ±6.17	0.66						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	159.64±4.47	0.54						

									Continuation of	f Table 1		
1	2	3	4	5	6	7	8	9	10	11		
Phenyl and phenolcarboxylic acids												
31	4-Hydroxybenzyl acetatic (2-(4-hydroxyphenylacetic)	1545	-	I	-	١	70.40±1.98	0.13	114.52± ±3.20	0.39		
32	Phenylacetic (α-toluic)	1746	72.80±0.51	0.10	29.74±0.83	0.06	9.26±0.24	0.02	1.57±0.04	0.01		
33	Salicylic (2-hydroxybenzoic)	1757	6.88±0.24	0.01	18.78±0.49	0.03	15.01±0.36	0.03	12.29±0.32	0.04		
34	Vanillic (4-hydroxy-3- methoxybenzoic)	2522	479.00± ±13.41	0.64	226.51± ±0.66	0.42	1590.56± ±39.80	2.86	39.85±1.10	0.14		
35	Syringic (4-hydroxy-3,5- dimethoxybenzoic)	2793	-	-	-	-	162.24± ±4.05	0.29	36.48±1.02	0.12		
36	Gentisic (2,5-dihydroxybenzoic)	2805	34.25±0.86	0.05	114.20± ±3.20	0.21	331.60± ±9.29	0.60	133.37± ±3.73	0.45		
Hydroxycinnamic acids												
37	<i>trans</i> -Cinnamic ((E)-3- phenyl-2-propenoic)	1450	-	-	316.55± ±8.22	0.59	-	-	-	-		
38	p-Methoxycinnamic (E) -3- (4-methoxyphenyl-2- propenoic)	1733	_	-	374.50± ±10.42	0.69	-	-	_	-		
39	p-Coumaric (3- (4- hydroxyphenol) -2propenoic)	2801	1740.70± ±48.64	2.34	963.92± ±24.57	1.79	835.37± ±23.38	1.50	-	-		
40	Ferulic (3-methoxy-4- hydroxycinnamic)	2919	408.48± ±11.23	0.55	449.99± ±11.34	0.83	_	-	657.88± ±17.76	2.24		
	Sum:			4,27	2902.73± ±5.67	5.39	5768.58± ±12.20	10.39	1348.44± ±3.78	4.59		
	Total:		74492.35± ±64.17	100	53903.90± ±53.62	100	55526.44± ±54.46	100	29347.37± ±25.36	100		
Total in raw materials, %		7.45±0.09		5.39±0.10		5.55±0.10		2.93±0.09				

Note: * - mg/kg in the raw material, ** - % percent of the sum of the detected components, "-" - the compound is not identified

5. Discussion of the results

The study found that total carboxylic acid content in the flowers of *Veronica chamaedrys* is 74492.35 mg/kg (7.45 %), including 58127.58 mg/kg of low molecular weight aliphatic acids, which is 78.03 % of the total carboxylic acids, 13187.17 mg/kg acids – 17.70 % of the total amount and 3177.60 mg/kg of aromatic acids – 4.26 % of the total amount (Fig. 6). Among the fatty acids, unsaturated ones predominate, the content of which is 8249.26 mg/kg, almost twice less is the content of saturated acids – 4937.91 mg/kg. Among aromatic acids, the content of hydroxycinnamic acids is 2149.18 mg/kg – 2.88 % of the total amount of carboxylic acids; phenyl and phenolic acids – 592.93 mg/kg – 0.80 % of the amount; benzoic acid and its derivative 435.49 mg/kg – 0.58 % of the total amount (Fig. 7).

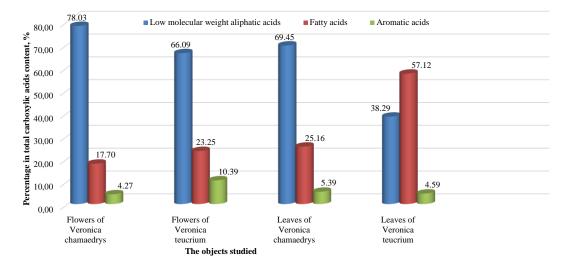


Fig. 6. The composition of carboxylic acids of flowers and leaves of *Veronica chamaedrys* and flowers and leaves of *Veronica teucrium*

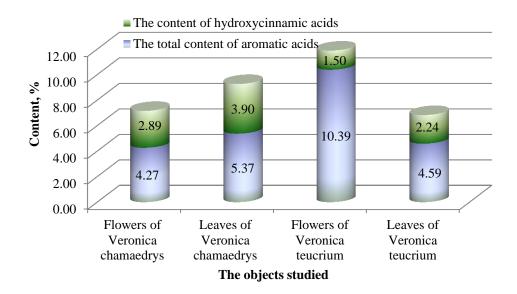


Fig. 7. The content of hydroxycinnamic acids in the composition of aromatic acids in the flowers and leaves of *Veronica chamaedrys* and in the flowers and leaves of *Veronica teucrium*

In the leaves of *Veronica chamaedrys* the total content of carboxylic acids is 53903.90 mg/kg (5.39 %), including 37436.32 mg/kg of low molecular weight aliphatic acids, which is 69.45 % of the total amount of carboxylic acids, 13564.85 mg/kg of fatty acids – 25.16 % of the amount and 2902.73 mg/kg of aromatic acids – 5.36 % of the amount. Among the fatty acids unsaturated acids dominate, the content of which is 9148.30 mg/kg, and they prevail over saturated acids (4416.55 mg/kg). Among aromatic acids the main part constitute hydroxycinnamic acids, their content is 2104.96 mg/kg – 3.90 % of the total sum, almost equivalent content of benzoic acid and its derivative and phenyl- and phenolic carboxylic – 408.54 mg/kg – 0.76 % of the amount and 389.23 mg/kg – 0.72 % of the total amount, respectively.

In the flowers and leaves of *Veronica chamaedrys* the dominant acids are (mg/kg): among low molecular weight aliphatic acids – citric (21928.81 and 11891.37, respectively) and malic (11937.78 and 11641.35, respectively); among higher fatty acids – linolenic (5208.58 and 6462.77, respectively); among aromatic – p-coumaric (1740.70 and 963.92, respectively).

In the flowers of Veronica teucrium the total content of carboxylic acids is 55526.44 mg/kg (5.55 %), including 36698.22 mg/kg of low molecular weight aliphatic acids, which is 66.09 % of the total carboxylic acids; 13059.64 mg/kg of fatty acids - 23.50 % of the amount, 5768.58 mg/kg of aromatic acids - 10.39 % of the amount. Among the fatty acids, unsaturated ones predominate, the content of which is 6938.97 mg/kg, slightly lower is the content of saturated acids - 6091.48 mg/kg. Aromatic acids are dominated by benzoic acid and its derivatives, the content of which is 2754.14 mg/kg, which is 4.96 % of the sum of carboxylic acids; slightly lower is the content of phenyl- and phenolcarboxylic acids -2179.07 mg/kg - 3.92 % of the total amount; the lowest is the content of hydroxycinnamic acid -835.37 mg/kg - 1.50 % of the total sum.

Veronica teucrium leaves contain 29347.37 mg/kg (2.93 %) of carboxylic acids, including 11235.98 mg/kg

of low molecular weight aliphatic acids, which is 38.29 % of the total carboxylic acids; 16762.95 mg/kg of fatty acids – 57.12 % of the total amount, 1348.44 mg/kg of aromatic acids – 4.59 % of the total sum. Among the fatty acids unsaturated ones dominate, the content of which is 10150.69 mg/kg, the content of saturated acids is 6603.1 mg/kg. Aromatic acids are dominated by hydroxycinnamic acis – ferulic acid, the content of which is 657.88 mg/kg - 2.24 % of the amount; almost twice less content of benzoic acid and its derivative – 352.48 mg/kg - 1.20 % of the amount; the content of phenyl- and phenol-carboxylic acids is comparable – 338.08 mg/kg - 1.15 % of the amount.

In the flowers of *Veronica teucrium* prevail (mg/kg): among low molecular weight aliphatic acids – 2-hydroxy-3-methylglutaric (9598.09) and citric (9184.74); among higher fatty acids – palmitic (2349.43); among aromatic acids – vanillic (1590.56) and p-hydroxybenzoic (1475.15).

In the leaves of *Veronica teucrium* following substances are dominated (mg/kg): among low molecular weight aliphatic acids – levulinic (3188.84) and malic (2656.96); among higher fatty acids – linolenic (5518.6) and palmitic (3706.63); among aromatic acids – ferulic (657.88). Only the flowers and leaves of *Veronica chamaedrys* contain α -furanic acid. Caproic, tricosanic, heneicosanic, 4-hydroxybenzylacetic and syringic acids were found only in the flowers and leaves of *Veronica teucrium*.

Within the species, the qualitative composition of carboxylic acids of different raw materials also has its differences. Thus, for *Veronica chamaedrys*, 2-hydroxy-3-methylglutaric, pentadecanoic and margaric acids are original for flowers; for the leaves of *Veronica chamaedrys* – cinnamic and *p*-methoxycinnamic acids. For *Veronica teucrium*, veratric and *p*-coumaric acids are original for flowers; for leaves – lignoceric and ferulic acids. These differences can be used as chemotaxonomic markers in the chemical identification of species.

The obtained data on the presence of *p*-coumaric

№6 (28)2020

and ferulic, linolenic, linoleic and palmitic acids in the leaves and flowers of *Veronica chamaedrys* are consistent with the results of other studies of this species herb [16, 17]. Carboxylic acids of flowers and leaves of *Veronica teucrium* of Ukrainian flora were first studied. For the first time in the flowers and leaves of *Veronica chamaedrys* of domestic flora aromatic acids were identified: benzoic, *p*-hydroxybenzoic, 4-hydroxybenzy-loacetic, salicylic, vanillic and gentisic; in the leaves - *trans*-cinnamic and methoxycinnamic acids.

For the treatment of metabolic syndrome, diabetes and heart disease, raw materials containing polyphenolic compounds, including aromatic acids, are considered as a potential source of drugs [22, 23]. Literature data indicate hypolipidemic and antidiabetic activity of ferulic acid found in the studied raw material [24, 25]. Numerous studies confirm the hypolipidemic effect of unsaturated fatty acids [26].

Thus, the obtained results allow us to consider the leaves of *Veronica teucrium* as a more promising raw material for the development of substances and study of their effects on the metabolic syndrome.

Study limitations. During the study of raw materials by GC-MS, a number of compounds could not be identified because their characteristics are missing in the library of mass spectra NIST 05 and Willey 2007 and programs for the identification of AMDIS and NIST.

The prospects for the further research. The obtained results indicate the feasibility of developing substances based on flowers and leaves of *Veronica chamaedrys* and *Veronica teucrium* and can be used for further chemotaxonomic studies.

For further medical use it is necessary to develop and validate methods of quality control of raw materials from the species of *Veronica*, to develop technological schemes for obtaining substances.

Given the results of phytochemical studies, it was found that the leaves of *Veronica chamaedrys* and flowers of *Veronica teucrium* are promising for the study of hypoglycemic and hypolipidemic effects in the correction of metabolic syndrome.

6. Conclusions

The composition of carboxylic acids of flowers and leaves of Veronica chamaedrys and Veronica teucrium was first studied by chromatophy-mass spectrometry. As a result of the study, 32 carboxylic acids in flowers and 31 carboxylic acids in the leaves of Veronica chamaedrys, 35 carboxylic acids in flowers and leaves of Veronica teucrium were identified and quantified. The flowers and leaves of Veronica chamaedrys have a higher content of carboxylic acids (7.45 % and 5.39 %, respectively) compared to the flowers and leaves of Veronica teucrium (5.55 % and 2.93 %, respectively). The flowers and leaves of Veronica chamaedrys are distinguished by the presence of α -furanic acid. Flowers and leaves of Veronica teucrium differ in the presence of caproic, tricosan, heneicosan, veratric, 4-hydroxybenzylacetic and syringic acids. These differences can be used as chemotaxonomic markers in the chemical identification of species. The obtained results allow us to consider the leaves of Veronica teucrium as a more promising raw material for the development of substances for the treatment of metabolic syndrome.

Conflict of interests

The authors declare that there is no conflict of interests.

Funding

The research was funded by the Ministry of Health Care of Ukraine at the expense of the State Budget in the framework # 2301020 "Scientific and scientific- technical activity in the field of health protection" on the topic "Modern approaches to the creation of new medicines for a correction of metabolic syndrome".

References

1. The Plant List. A working list of all plant species. Available at: http://www.theplantlist.org/browse/A/ Plantagina-ceae/Veronica/

2. Bardy, K. E., Albach, D. C., Schneeweiss, G. M., Fischer, M. A., Schönswetter, P. (2010). Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Molecular Phylogenetics and Evolution, 57 (2), 771–786. doi: http://doi.org/10.1016/j.ympev.2010.06.025

3. Mosyakin, S. L., Fedoronchuk, M. M. (1999). Vascular plants of Ukraine: A nomenclatural checklist. Kyiv: M.G. Kholodny Institute of Botany, 345.

4. Xue, H., Chen, K.-X., Zhang, L.-Q., Li, Y.-M. (2019). Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. The American Journal of Chinese Medicine, 47 (6), 1193–1221. doi: http://doi.org/10.1142/ s0192415x19500617

5. Beara, I., Živković, J., Lesjak, M., Ristić, J., Šavikin, K., Maksimović, Z., Janković, T. (2015). Phenolic profile and antiinflammatory activity of three Veronica species. Industrial Crops and Products, 63, 276–280. doi: http://doi.org/10.1016/j.indcrop. 2014.09.034

6. Živković, J. Č., Barreira, J. C. M., Šavikin, K. P., Alimpić, A. Z., Stojković, D. S., Dias, M. I. et. al. (2017). Chemical Profiling and Assessment of Antineurodegenerative and Antioxidant Properties of Veronica teucrium L. And Veronica jacquinii Baumg. Chemistry & Biodiversity, 14 (8), e1700167. doi: http://doi.org/10.1002/cbdv.201700167

7. Mocan, A., Vodnar, D., Vlase, L., Crişan, O., Gheldiu, A.-M., Crişan, G. (2015). Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties. International Journal of Molecular Sciences, 16 (9), 21109–21127. doi: http://doi.org/10.3390/ijms160921109

8. Tinkov, A. A., Gatiatullina, E. R., Nemereshina, O. N., Nikanorov, A. A., Aminin, D. L., Gritsenko, V. A. (2014). Sravnitelnii analiz vliianiia rastenii semeistva Podorozhnikovye na rost E. coli in vitro. BONTS UrO RAN, 2, 16.

9. Taskova, R., Peev, D., Handjieva, N. (2002). Iridoid glucosides of the genus Veronica s.l. and their systematic significance. Plant Systematics and Evolution, 231 (1-4), 1–17. doi: http://doi.org/10.1007/s006060200008

10. Jensen, S. R., Albach, D. C., Ohno, T., Grayer, R. J. (2005). Veronica: Iridoids and cornoside as chemosystematic markers. Biochemical Systematics and Ecology, 33 (10), 1031–1047. doi: http://doi.org/10.1016/j.bse.2005.03.001

11. Crişan, G., Vlase, L., Balica, G., Muntean, D., Ştefănescu, C., Păltinean, R. et. al. (2010). LC/MS analysis of aucubin and

catalpol of some Veronica species. Farmacia, 58, 237–242.

12. Kovalyova, A. M., Ilina, T. V., Osmachko, A. P., Koshovyi, O. M., Grudko, I. V. (2020). Carboxylic Acids from Herbs of Veronica austriaca, V. cuneifolia, and V. armena. Chemistry of Natural Compounds, 56 (6), 1111–1113. doi: http://doi.org/10.1007/s10600-020-03238-1

13. Crișan, G., Tămaș, M., Miclăuș, V., Krausz, T., Sandor, V. A. (2007). A comparative study of some Veronica L. species. Revista Medico-chirurgicala a Societatii de Medici și Naturalisti din Iasi, 111, 280–284.

14. Gusev, N. F., Nemereshina, O. N., Petrova, G. V. (2013). Izuchenie biologicheski aktivnikh veschestv v rasteniiakh Veronica chamaedrys L. i V. officinalis L. Uspekhi sovremennogo estestvoznaniia, 8, 113–119.

15. Marcenco, A. (2008). Studiul compozitiel chimice al Veronica chamaedrys L. Book of abstracts of the International Conference of Young Researchers. Chişinău, 22.

16. Milian, I. I. (2016). Farmakohnostychne doslidzhennia roslyn rodu Veronika (Veronica L.). Lviv, 22.

17. Marchyshyn, S. M. Milian, I. I. (2016). The content of fatty acids in lipophilic extracts of Veronica chamaedrys L. and Veronica officinalis L. Journal of Education, Health and Sport, 6 (3), 91–96.

18. Nikolova, M., R. G. (2005). A HPLC Analysis on Interpopulational Variations in the Flavonoid Composition of Veronica chamaedrys. International Journal of Botany, 2 (1), 7–10. doi: http://doi.org/10.3923/ijb.2006.7.10

19. Nikolova, M., Gevrenova, R., Ivancheva, S. (2003). External flavonoid aglycones from Veronica chamaedrys L. (Scrophulariaceae). Acta pharmaceutica, 53, 145–149.

20. Osmachko, A., Kovaleva, A., Ilyina, T., Koshovyi, O., Sidora, N. (2017). Chromatography-mass spectrometry study of low molecular aliphatic, fatty and aromatic acids of Veronica teucrium L. rhizomes. ScienceRise: Pharmaceutical Science, 2 (6), 22–25. doi: http://doi.org/10.15587/2519-4852.2017.99317

21. Osmachko, A. P., Kovaleva, A. M., Ilyina, T. V., Koshovyi, O. M. (2017). Carboxylic acids of phenolic complexes from Veronica teucrium L. News of Pharmacy, 3 (91), 21–27. doi: http://doi.org/10.24959/nphj.17.2179

22. Williamson, G., Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81 (1), 243S–255S. doi: http://doi.org/10.1093/ajcn/81.1.243s

23. Pankaj, G. J, Sanjay, J. S. (2016). Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats. EXCLI J., 15, 599–613. doi: http://doi.org/10.17179/excli2016-394

24. Choi, R., Kim, B. H., Naowaboot, J., Lee, M. Y., Hyun, M. R., Cho, E. J. et. al. (2011). Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Experimental and Molecular Medicine, 43 (12), 676–683. doi: http://doi.org/10.3858/emm.2011.43.12.078

25. Hsu, C.-L., Yen, G.-C. (2008). Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Molecular Nutrition & Food Research, 52 (1), 53–61. doi: http://doi.org/10.1002/mnfr.200700393

26. Chen, S., Wen, X., Zhang, W., Wang, C., Liu, J., Liu, C. (2016). Hypolipidemic effect of oleanolic acid is mediated by the miR- 98- 5p/PGC- 1β axis in high- fat diet- induced hyperlipidemic mice. The FASEB Journal, 31 (3), 1085–1096. doi: http://doi.org/10.1096/fj.201601022r

Received date 17.11.2020 Accepted date 21.12.2020 Published date 30.12.2020

Alla Kovaleva, Doctor of Pharmaceutical Sciences, Professor, Department of Pharmacognosy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002 E-mail: allapharm@yahoo.com

Tetiana Ilina, Doctor of Pharmaceutical Sciences, Professor, Department of Pharmacognosy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002 E-mail: ilyinatany86@gmail.com

Ain Raal, PhD, Professor, Institute of Pharmacy, University of Tartu, Nooruse 1, Tartu, Estonia, 50411 E-mail: ain.raal@ut.ee

Alina Osmachko, PhD, Assistant-lecturer, Department of Pharmacognosy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002 E-mail: osmachkoalina5@gmail.com

Olga Goryacha, PhD, Assistant-lecturer, Department of Pharmacognosy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002 E-mail: helgagnosy@gmail.com

Yaroslav Rozhkovskyi, MD, Professor, Department of Pharmacology and Pharmacognosy, Odessa National Medical University, Valikhovskiy lane, 2, Odessa, Ukraine, 65082