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Abstract. The main provisions of the methodology of the study of complex oscillations of 
elastic bodies are outlined. Its main idea is as follows: a) on the basis of empirical studies, the 
change of the basic parameters of some forms of oscillation (usually smaller amplitude) is 
approximated by their analytical relations; b) these relationships are taken into account when 
constructing a mathematical model of the elastic body; c) for constructing and studying the solution 
of the obtained mathematical model of the process dynamics, the main ideas of the asymptotic 
integration of equations with partial derivatives are used. 

Taken together, this allows us to obtain a two-parameter set of solutions that take into account 
the influence on the dynamics of the process of external and internal factors. The methodology is 
illustrated by the example of an elastic body, which simultaneously performs longitudinal and 
transverse vibrations. With the its aid  it  is established that resonant processes can exist in an elastic 
body not only by external actions, but also by the mutual influence of some forms of oscillation on 
others. The obtained results can serve as the basis for the choice of operating parameters of elastic 
elements of machines that carry out complex oscillations. 

Keywords: nonlinear-elastic body, asymptotic methods, amplitude, resonance, complex oscillations. 

Statement of the problem 
The analysis of dynamic processes in mechanical systems, which include elements with distributed 

parameters, shows that in most cases, the latter carry out complex oscillations. They combine the 
longitudinal, bending, and in some cases torsional oscillations. The isolation of some of them, which have 
the largest amplitude (with the simultaneous neglect of the influence on them of others with small 
amplitude), can lead to significant inaccuracies in describing the dynamic process of the given element or 
all system. The magnitude of the error during such a simplified approach to the analytical description of 
the dynamic process of elastic bodies increases significantly in cases where the frequencies of the 
components of the oscillations are close to the values (bound by rational relations) and in cases where the 
elastic properties of the investigated element are described by nonlinear relations. 

On the other hand, the analytical study of complex dynamic processes in elastic bodies based on 
mathematical models that take into account a wide range of external and internal factors is associated with 
significant difficulties. They include the integration of systems of partial differential equations with 
boundary conditions, which are determined by external interaction with others bodies at its ends. 
Therefore, there is a problem of developing such an analytical method, which, on the one hand, would take 
into account the wide range of factors influencing on it, and on the other hand, it would be available for 
engineering calculations. Partial solution of such problem is illustrated in this work by an example of an elastic 
body that simultaneously perform bending and longitudinal oscillations. An analytic-empirical method develops 
for this purpose. Its main idea is as follows: on the basis of empirical information on component oscillations 
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(usually less amplitude), they are described by their approximate analytical relations; the obtained dependence is 
taken into account in the refined mathematical model of other oscillations; for the latter, which is relatively 
simple, one of the most convenient analytical methods is used. 

Materials and methods 
For the analytical study of simple nonlinear oscillation processes of systems with distributed 

parameters, the most effective methods are those, which based on the main idea of perturbation methods  
[1, 2]. They are used effectively to study one [3-5] or multi-frequency oscillations [2, 6, 7] of elastic bodies, 
as well as to systems with distributed parameters that are characterized by a longitudinal component of the 
velocity [7–10]. However, the operation of actually existing structures is accompanied, as a rule, by complex 
oscillations of their elements, for example, rotors of turbines simultaneously perform bending and twisting 
oscillations [11, 12], columns for drilling of oil and gas wells – longitudinal bending and twisting oscillations 
[13, 14] etc. Some experimental and theoretical studies show that the components of the oscillations of the 
elements of structures in individual cases, interacting with each other, can lead to significant dynamic loads in 
them. To prevent such phenomena, in advance, information about the reaction of the investigated element on 
one or another kind of perturbations, as well as the result of the interaction of certain types of oscillations, is 
necessary. Most accurately, it could be obtained based on adequate physical and, accordingly, mathematical 
models. However, to study the complex oscillations of even the simplest physical models of structural 
elements, there are mathematical difficulties. To overcome them in recent years, has gained a new impetus 
the development of the method, which is based on the use of partial information about the dynamics of the 
process [15, 16]. Further use of it in a mathematical model makes it simpler, and on the other hand, it allows 
to trace  such complex processes as resonant phenomena caused by external factors and the process of 
interaction of some oscillations with others (internal resonances [13, 17]). 

As noted above, the purpose of the work is to develop a method for studying complex nonlinear 
oscillations of one-dimensional models of elastic bodies, more precisely elastic bodies that carry both bending 
and longitudinal oscillations. The main idea of the method is based on a priori information for the one of the 
oscillations. In the case under consideration, this is the amplitude-frequency characteristic of the longitudinal 
oscillations of the elastic body. Therefore, it is assumed that one of the parameters of this characteristic of the 
dynamic process of an elastic body (amplitude) assumes small values in comparison with the amplitude of 
bending oscillations. In spite of this, the effect of longitudinal oscillations on bending may increase over the 
time and at the expense of the latter in elastic bodies, even extremely dangerous resonance processes may occur. 
In order to predict and describe them first of all, it is necessary to construct the mathematical model of the 
investigated process. It is assumed in the work that bending oscillations occur in one plane XOY, and the axis 
OY coincides with the statically balanced position of the elastic body. In this case, the components of the 
displacement of the body section with coordinates are determined by two functions: ( ),w y t  – transverse; 

( ),v y t  – longitudinal. The amplitude of longitudinal oscillation is much smaller than the bending amplitude, 
and on the basis of empirical studies with a sufficient degree of accuracy it can be described by the relationship 

( ), sin cos( )u y t b y t
l
κ

φ= Ω + , where b  is an amplitude of longitudinal oscillations, Ω  is their frequency, 

,k φ  are the constants and l is the distance between points of fixation of an elastic body). 
We note that: 
a) in the work it is assumed that the ends of the body are hinged, and therefore their displacement is 

equal to zero. It allows the boundary conditions for the function ( ),w y t  write in the form 

( )
2

2
, 0, 0, 0,y j

y j

ww y t j l
y=

=

∂
= = =

∂
, (1) 

where , 1, 2,...k kκ π= =  
b) a more complex case of nonlinear longitudinal oscillations of the body may be the subject of 

separate studies. 
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Solving procedure 
The basis for solving this problem is the differential equation for the transverse component of the 

displacement of the elastic body, which takes into account the known appearance of the longitudinal 
oscillation and the corresponding boundary conditions. To obtain it, it is necessary to consider the effect of 
given longitudinal oscillations on transverse, that is, “dynamic equilibrium” of the conditionally selected 
element of the body with the lengths  dy   under the case that it is  in a complex movement. Assuming that 
it moves in the direction perpendicular to the axis OY in the portable, then the relative component will be 
directed along the tangent to the curved axis of the elastic body. It means that a relative acceleration of the 

point that coincides with its middle can be represented in the form 
2 2

2 2
cos sinr

u ua i j
t t

α α
∂ ∂

= +
∂ ∂

r rr , where  

,i j
r r

are  the vectors which directed along the axes OX and OY, α  is the angle of inclination to the vertical 
of the single vector of the tangent to the curved axis of the elastic body.  Therefore for small oscillations 

sin ,w
y

α α
∂

= =
∂

 cos 1α = .According to the definition of the Coriolis acceleration (taking into account the 

above), we have 
2 2

2 2cor
w u w w ua i j

y t t y y t t
∂ ∂ ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

r rr . These allows with a sufficient degree of accuracy 

the differential equation, which describes the flexural component of the oscillations of an elastic body, 
write in the form 

2 4 3 2
12 4 3

, , ..., , sin cos( ) 2 sin( )w u w w w wEI f w b y t t
t l y y tt y y

κ
ρ ε γ ρ φ φ

   ∂ ∂ ∂ ∂ ∂ ∂
+ = + Ω Ω Ω + + Ω +     ∂ ∂ ∂ ∂∂ ∂ ∂   

. (2) 

We denote by ρ  the mass of the unit of the length of the elastic body, by EI  its stiffness to the bend 
( E is the elastic modulus of the first kind, I is the moment of inertia of the transverse section of the body), by 

3

3
, , ..., ,w wf w

t y
γ

 ∂ ∂
  ∂ ∂ 

 the function that describes resistance forces, the nonlinear component of the restoring 

force, the external  2π – periodic with respect to γ  perturbation with the frequency µ  ( tγ µ= ) and other 
forces, the maximum value of which is significantly smaller than the maximum values of the terms of the left 
parts, on which indicate by the small parameter .ε  At the same time, it follows that the vertical component of 
the Coriolis force of the inertia of the elastic body affects the dynamic component of the fixation reactions. 

Thus, the problem was reduced to the construction and investigation of the solution of the 
differential equation (2) with boundary conditions (1). The restrictions on the right-hand side of the 
obtained equation allow for the construction of its one-frequency solution to use the general idea of the 
Van der Pol method adapted for systems with distributed parameters [4]. Consequently, one frequency 
solution of the boundary value problem (1), (2) we represent in the form 

( ) ( ) ( )( ) ( )( )( ), sin sin .s s s s s s sw t y a t y t t y t tχ ω ψ χ ω ψ= + + + − −  (3) 

In formula (3), ( )sa t , ( )3 tψ  are the unknown functions, which are defined in  such  a way that it, 
with the accuracy of quantities of the order ε , satisfies the original equation, with sχ  sω  such as 

, 1, 2,...s
s s
l
π

χ = = , 2
s s

EI
ω χ

ρ
= . 

Differentiating (3) with respect to t  and y  we get 

( ) ( ) ( ) ( ) ( )
,

(cos cos ) (sin sins s s
s s s s s s s s s

w t y d da
a y y y y

t dt dt
ψ

χ ψ κ ψ χ ψ χ ψ
∂

= + − − + + + −
∂

, (4) 
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( ) ( ) ( )

( ) ( )

2

2
,

(sin sin )

(cos cos ),

∂
= − + + − +

∂

+ + − −

s s
s s s s s

s
s s s s s s

w t z da y y
dtt

da y y
dt

ω χ ψ χ ψ

ψ
ω χ ψ χ ψ

 

( ) ( )( ) ( )( )( )cos coss s s s s
w a t y t y t
y

χ χ ψ χ ψ
∂

= + + −
∂

, 

( ) ( )( ) ( )( )( ) ( ) ( )
4

4
4

sin sin ,s s s s s s s s
w a t y t y t t t t

y
χ χ ψ χ ψ ψ ω ψ

∂
= + + − = +

∂
. 

Denote that: a) representation in the form (3) holds for so-called “short” systems [5]. In a more 
complex case, the parameters sa  3ψ  also depend on the linear variable. This case may be the subject of a 
separate study; b) in accordance with the Van -der-Poll method, it is accepted 

( ) ( ) ( ) ( )(cos cos ) (sin sin ) 0.s s
s s s s s s s

d da
a y y y y

dt dt
ψ

κ ψ κ ψ κ ψ κ ψ− + − − + + + − =  (5) 

Substituting dependences (3), (4), (5) into the original equation (2), we conclude 

( )

sin cos sin sin

( , , , ) sin cos cos cos( ) sin sin( ) ,
2

s s
s s s s s s s

s s s s s s s s

da d
y a z

dt dt

f a y a b y y t t
l

ψ
ω χ ψ ω χ ψ

ε κ
ψ γ χ χ ψ φ ω ψ φ

ρ

− =

= + Ω Ω Ω + + Ω +%
 (6) 

where ( , , , )s sf a yε
ψ γ

ρ
%  is a known function, which correspond to 

3
1 3

, , ..., ,w wf w
t y

ε γ
 ∂ ∂
  ∂ ∂ 

 under the 

condition that  ( ),w t y  and its derivatives are defined by (4), (5). 

We will treat the relationship (6) with condition (5) as a system of differential equations that defines 
unknown functions ( ) ( )3,sa t tψ . Solving it with respect to the derivatives of these functions (after the 

process of averaging over a linear variable), we obtain 

( )
1

2
0

( , , , )sin cos
, ,

sin sin 2 cos cos sin 2 sin )2

s s sl
s

s s s s s ss
s

f b y y
da

dy t
a b y ydt l

l

ψ γ χ ψ
ε

θ φκ
χ χ ψ θ ω ψ θρω

ω

 +
 = =Ω +Ω + Ω + 
 

∫

%

 

1

2
0

( , , , )sin sin
.12 sin sin2 sin2 cos 2 sin sin

2

s s sl
s

s s s s s s s s
s

f b y y
d

dy
dt l a a b y y

l

ψ γ χ ψ
ψ ε

κρ ω χ χ ψ θ ω ψ θ
ω

 +
 =  Ω  + Ω +    

∫

%

 

(7) 

The right-hand sides of non-autonomous differential equations (7) are periodic in phases 
, ,sψ γ θ  with a period 2π , therefore, for the dynamic process, they describe the possible following 

cases: a) nonresonant; b) resonance caused by external periodic perturbation; c) resonance caused by 
longitudinal oscillations. We first consider the simplest, nonresonant case of complex oscillations of 
an elastic body. As shown in [2], for the first approximation of the asymptotic solution of non-
autonomous systems with distributed parameters, small periodic perturbations do not affect the 
magnitude of the change in the defining parameters of the oscillations, but only on their form. It 
means that for a nonresonance case, the system of differential equations (7) can be replaced on more 
simply, namely 
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{ }

12 2 2
2

3
0 0 0 0

2 2

12
0 0 0

( , , , ) sin cos

cos cossin sin 216
sin 2 sin )

( , , , ) sin cos ,
8

s s sl
sн

s
s s ss

s s s
l

s s s s
s

f b y y
da

dyd d d
dt a b y yl l

f b y y dyd d
l

π π π

π π

ψ γ χ ψ
ε

ψ θ γκ ψ θ
χ χρω π

ω ω ψ θ

ε
ψ γ χ ψ ψ γ

ρω π

 +
  = =  Ω Ω +

+    +   

=

∫ ∫ ∫ ∫

∫ ∫ ∫

%

%

 

{ }

1
2 2 2

3
0 0 0 0

2

2 2

12
0 0 0

( , , , )sin sin
1 sin 2 cos
2sin sin 216

2 sin sin

( , , , ) sin sin .
8

s s s
l

sн
s

s s ss s
s

s s
l

s s s
s s

f b y y
d

dyd d d
dt a b y yl a l

f b y y dyd d
l a

π π π

π π

ψ γ χ ψ

ψ ε ψ θ ψ θ γκ
χ χρ ω π

ω
ω ψ θ

ε
ψ γ χ ψ ψ γ

ρ ω π

 +
 
  Ω += = Ω  +  

  +  

=

∫ ∫ ∫ ∫

∫ ∫ ∫

%

%

 

(8) 

Thus, in the case where the frequency of bending and longitudinal oscillations of the elastic body is 
substantially different, small longitudinal oscillations do not affect the defining parameters of bending 
oscillations, but partly change their shape. 

Resonant oscillations caused by external periodic perturbation. In the general case of the 
indicated resonant oscillations between the intrinsic frequency sω  and the frequency of forced 

oscillations µ , there is a connection that can be described by the dependence ;s
p
q

ω µ=   where ,p q  

are mutually prime numbers. However, in nonlinear mechanical systems, as a rule, a dynamic 
process with a frequency close to the first fundamental frequency of oscillations is established, 
therefore, we will assume that, without further reducing the universality, we will assume 1q pω µ= . 
In addition, the resonance of mechanical systems, more precisely, the amplitude of passage through 
the resonance is determined not only by physical and mechanical factors, but also by the difference 
in the phases of the own and forced oscillations. Formally entering the given parameter 

1 1
p p
q q

ϑ ψ γ ψ γ ϑ= − ⇒ = +  into the system of differential equations (7) after averaging over the 

phases of own and forced oscillations, we obtain 
21 е

1 1
1 0 0

( , , , ) sin cos ,
4

lр з
рез

da p pf a y y dyd
dt l q q

πε
γ ϑ γ χ γ ϑ γ

ρω π
   = + +  
   

∫ ∫ %  

2

1 1 1
1 1 0 0

( , , , ) sin sin .
4

l

рез
рез

p p pd f a y y dyd
dt q l a q q

πϑ ε
ω µ γ ϑ γ χ γ ϑ γ

ρ ω π
   = − + + +  
   

∫ ∫ %  

(9) 

For the case of the main resonance caused by the external periodic perturbation ( 1p q= = ), they are 
transformed into the view 

( ){ }
21

1 1
1 0 0

( , , , ) sin cos
4

lрез
рез

da
f a y y dyd

dt l

πε
γ ϑ γ χ γ ϑ γ

ρω π
= + +∫ ∫ % , 

( ){ }
2

1 1 1
1 1 0 0

( , , , )sin sin .
4

l

рез
рез

d f a y y dyd
dt l a

πϑ ε
ω µ γ ϑ γ χ γ ϑ γ

ρ ω π
= − + + +∫ ∫ %  

(10) 

Thus, in the resonance case on the frequency of the external periodic perturbation, small longitudinal 
oscillations do not affect the amplitude of the resonance. 
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Resonance transverse oscillations caused by longitudinal oscillations. This case takes place, as 

follows from the relations (8), for the fulfillment of the condition ; ,s
m m n
n

ω = Ω  are mutually prime 

numbers. Proceeding in the same way as for the resonance at the frequency of the external periodic 
perturbation from the differential equations (7), we obtain 

2 2

2
0 0 0

2

( , , , )sin cos

sin sin 2 ,
8

cos ( ) cos sin 2( ) sin )

sрез s

lsрез
s sрез s

ss

s

m mf a y y
n n

da
a b y y

dt ll
m m dyd d
n n

π π

θ ϑ γ χ θ ϑ

ε κ
χ χ

ωρω π

θ ϑ θ ω θ ϑ θ γ θ

   + + +   
 Ω = + × 
 
   × Ω + + +     

∫ ∫ ∫

%

 

28
s

s sез

d m
dt n l a
ϑ ε

ω
ρω π

= − Ω + ×  

2 2

0 0 0

2

( , , , ) sin sin

sin sin 2 ,

1 sin 2( ) cos 2 sin ( )sin
2

sрез s

l

s sрез s
s

s

m mf a y y
n n

a b y y dyd d
l

m m
n n

π π

θ ϑ γ χ θ ϑ

κ
χ χ γ θ

ω

θ ϑ θ ω θ ϑ θ

  + + +    
 Ω × + × 
 
   × Ω + + +    

∫ ∫ ∫

%

 

(11) 

where ϑ  is the phase difference between the self-bending and longitudinal oscillations, i.e. 

s s
m m
n n

ϑ ψ θ ψ θ ϑ= − ⇒ = + . We simplify the obtained system of differential equations for determining 

the law of variation of the amplitude of internal resonance taking into account the following measures: 

– for the first, the function
3

3
, , ..., ,w wf w

t y
γ

 ∂ ∂
  ∂ ∂ 

 does not depend on the parameters that describe the 

longitudinal oscillations of the elastic body, therefore 

2 2

0 0 0

2 2

0 0 0

cos
( , , , ) sin

cos
( , , , ) sin ;

l

sрез s

l

sрез s

m
nmf a y y dyd d

n msіn
n

f a y y dyd d
sіn

π π

π π

θ ϑ
θ ϑ γ χ γ θ

θ ϑ

ψ
ψ γ χ γ ψ

ψ

  +    + = 
  +    

 
=  

 

∫ ∫ ∫

∫ ∫ ∫

%

%

 (12) 

– for the second, 

0 0

0 2
2sin sin 2 sin sin

2
2

l l
s

при k s
k sy y y y ll l l при k s

κ π π
χ

≠ 
 = =  

=  
∫ ∫ ; (13) 

therefore, internal resonances are possible on even forms of longitudinal oscillations; 
– for the third, 

2

0
sin 2( )sinm d

n

π
θ ϑ θ θ+ =∫  (14) 
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2 2

2 2 2 2

sin 1 2cos 2 cos sin sin 24 cos
,

4 2sin 1 2cos cos

m m m mmmn n n n nn
m mm n
n n

π π π ππ ϑ

π π
ϑ

  − − −     =  
 −  − −    

 

2
2

0

2 2

2 2 2 2

cos ( ) cos

sin 1 2cos 2 cos sin sin 24 cos
,

4 2sin 1 2cos cos

m d
n

m m m mmmn n n n nn
m mm n
n n

π
θ ϑ θ θ

π π π ππ ϑ

π π
ϑ

+ =

  − − −     =  
 −  − −    

∫

 

2 2 2
2

2 2 20

cos sin 2 cos sin cos16 cos
sin 2( ) cos ,

14 sin 1 4cos sin 2
2

m m m mmmn n n n nm nd
m mn m n
n n

π
π π π ππ ϑ

θ ϑ θ θ
π π

ϑ

 − +−   + =   −  + −    

∫  

2 22
2

2
2 2

2 20

1cos sin sin 2cos 1 sin 24 cos 2sin ( ) sin .
4 2cos cos sin

m m m mmnm n n n nnd
n m mm n

n n

π
π π π ππ ϑ

θ ϑ θ θ
π π

ϑ

  − − −−     + =  
−  −  

∫  

It means that the combination resonances at the frequency of longitudinal oscillations take place 

under conditions 2 1 , 1, 2,...
2

qm q
n

+
≠ =  

All these arguments allow state that the frequency of the lowest internal resonance corresponds to 
the second form of longitudinal oscillations ( 1, 2,s k= = at 1, 2m n= = ). Differential equations (13) in this 
case are transformed into a form 

( )

2 21
2

0 0 01

1 1 12
1

( , , , )sin cos
8

2 cos 2 ,
4

lрез
sрез s

рвз

da
f a y y dyd d

dt l

a b

π πε
ψ γ χ ψ ψ γ

ρω π
π

χ ω ϑ
ρω
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Assume that: a) the elastic properties of the investigated body satisfy the nonlinear technical law of 
elasticity [2]; b) the small resistance forces are proportional to the velocities in power S; c) the small external 

periodic perturbation varies according to the harmonic law, the function 
3

1 3
, , ..., ,w wf w

t y
ε γ

 ∂ ∂
  ∂ ∂ 

 takes the form 

2 23 4 2 3 2

1 1 2 33 4 2 3 2
, , ..., , 3 6 sin

sw w w u u u uf w k k EI k t
t ty x x x x

ε γ ε ε µ
       ∂ ∂ ∂ ∂ ∂ ∂ ∂    = + + +              ∂ ∂   ∂ ∂ ∂ ∂ ∂        

, (coefficients 

1 2,k k  and 3k  characterizes the magnitudes of the resistance force and periodic perturbation). 
Then in the nonresonance case, as follows from the differential equations (8), the basic parameters of 

bending oscillations of an elastic body in the form close to the first form of “dynamic equilibrium” are described 
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by the relations 
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1 2
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, .

128
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 As for the main resonance at the frequency of the 

external periodic perturbation, then equations (11) are transformed in the indicated case to the view 
1
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 (16) 

For internal resonance in the case 1, 2m n= =  the equations which describe the change in the basic 
parameters of resonance bending oscillations take the form 
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(17) 

Results and Discussion 
Below, on the basis of equations (17), for different values of the parameters, the variation of the 

amplitude of transverse oscillations in the transition through the internal resonance for the following values 
of parameters is presented: 11 22,06 10 / ,E H m= ×  80.54 / .кg mρ =  

1
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Fig. 1. Diagram of system function 
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Conclusions 
For the elastic body, which performs bending and longitudinal oscillations, a method for 

identification the influence of the main external and internal factors on the determinant parameters of 
flexural variation is developed under the condition that the magnitude of the amplitude of the longitudinal 
oscillations is predetermined value which is significult less than the magnitude of the bending amplitudes. 
It is established on its base that: 

– for the specified type of oscillation of the elastic body, possible bending resonance phenomena are 
caused by both external factors and longitudinal oscillations (internal resonances); 

– internal resonances can exist only at frequencies that are proportional to the frequencies of 
pairwise modes of longitudinal oscillations; 

– the amplitude of the transition through the resonance at the fundamental frequency of external 
perturbation takes less value for elastic bodies of greater flexural rigidity; 

– the amplitude of bending oscillations in the “fast” transition through resonance at the frequency of 
external or internal perturbation is less than with “slow”; 

– the amplitude of the bending vibrations of the transition through the internal resonance at higher 
frequencies of longitudinal oscillations is less than at the second frequency of longitudinal oscillations. 

The obtained results can serve as the basis for choosing the main technological and exploitation 
parameters of the elastic elements of mechanisms and machines that carry out complex oscillations. 
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