УДК 621.224

В.А. КОЛЫЧЕВ, канд. техн. наук, В.Э. ДРАНКОВСКИЙ, канд. техн. наук, Л.Н. ЦЕХМИСТРО, канд. фил. наук, К.А. МИРОНОВ, И.И. ТЫНЬЯНОВА, А.В. СЕРГЕЕВ

Национальный технический университет «Харьковский политехнический институт»

ЗАВИСИМОСТИ ПОТЕРЬ ЭНЕРГИИ В ЭЛЕМЕНТАХ ПРОТОЧНОЙ ЧАСТИ РАДИАЛЬНО-ОСЕВОЙ ГИДРОТУРБИНЫ ОТ ЕЕ ГЕОМЕТРИЧЕСКИХ И РЕЖИМНЫХ ПАРАМЕТРОВ

На основі спрощених моделей плину в елементах проточної частини отримані функціональні залежності, що відбивають взаємозв'язок окремих видів (категорій) втрат в елементах проточної частини з геометричними й режимними параметрами. Наведено методику розрахунку втрат у діапазоні основних режимів роботи радіально-осьової гідротурбіни.

Введение

Совершенствование проточной части (ПЧ) гидротурбины (ГТ) базируется на проведении обширных численных исследований, в процессе которых осуществляется поиск наиболее рациональных вариантов. В основе такого поиска лежит многовариантный численный анализ влияния геометрических и режимных параметров на энергетические показатели ГТ. Необходимым условием проведения численного исследования является предварительное построение зависимостей, отражающих взаимосвязь потерь энергии в элементах ПЧ с геометрическими и режимными параметрами ГТ. Для решения этой задачи используется как упрощенные модели течения, так и более сложное кинематическое описание потока с помощью квазитрехмерных и трехмерных моделей течения жидкости.

Применение квазитрехмерных и трехмерных методов в принципе позволяет, для заданных конкретных условий, найти распределение параметров пространственного потока и более точно найти потери энергии. Эти данные используются для нахождения зависимостей, функциональных связующих потери искомых энергии с геометрическими и режимными параметрами. При этом исходят из задания структуры предполагаемой зависимости, а ее коэффициенты находят с помощью методов регрессионного анализа и планирования эксперимента. При таком подходе задача установления закономерностей изменения потерь в связи с геометрическими и режимными параметрами чрезвычайно усложняется ввиду наличия большого числа переменных.

Другой подход заключается в использовании упрощенных кинематических моделей течения в элементах ПЧ, не учитывающих в полной мере распределение параметров потока по высоте ПЧ. Потери энергии в этом случае определяются более приближенно, но значительно проще. Определенным достоинством такого способа является возможность получения зависимостей потерь от геометрических и режимных параметров в аналитическом виде.

В рамках такого подхода в работах [1, 2] получены приближенные зависимости для циркуляционных потерь и ударных потерь в рабочем колесе (РК). Эти зависимости используются автором для расчета и анализа параметров оптимального режима и для прогнозирования универсальной характеристики [2].

В работах [3-5] построение зависимостей потерь энергии в функции геометрических и режимных параметров базируется на кинематическом описании потока с помощью осредненных параметров [6]. Коэффициент потерь энергии в элементах ПЧ находится в зависимости от осредненных углов потока в сечениях безлопастных участков ПЧ. Для установления связи коэффициента потерь с режимными параметрами используются зависимости общей теории решеток [7].

В отличии от [7] в данной работе для отыскания зависимостей коэффициентов потерь энергии в функции геометрических и режимных параметров используются уравнения кинематической связи для элементарных решеток на поверхностях тока в слое переменной толщины [8].

Целью работы является определение зависимостей отдельных видов потерь энергии в элементах ПЧ от геометрических и режимных параметров. В задачу работы входило также расчетное определение и анализ отдельных видов потерь энергии в элементах ПЧ в диапазоне основных эксплуатационных режимов высоконапорных радиально-осевых (РО) ГТ.

Результаты

Приведем основные функциональные зависимости, описывающие энергетическое взаимодействия потока с рабочими органами ГТ с помощью безразмерных коэффициентов: K_{HT} , K_h [3]:

$$\eta_{e} = \frac{K_{HT}}{g} Q_{I}^{2}, \qquad (1)$$

$$Q_I^{2} = \frac{g}{K_{HT} + K_h}.$$
 (2)

В этих зависимостях:

$$K_{HT} = \frac{gH_m D^4}{Q^2} = K_{HT} \left(\frac{\overline{\Gamma}_0 D}{Q}, K_Q, L_{p\kappa} \right)$$
(3)

$$K_{h} = \frac{ghD^{4}}{Q^{2}} = K_{h} \left(\frac{\overline{\Gamma}_{0}D}{Q}, K_{Q}, L \right), \qquad (4)$$

где K_{HT} – коэффициент теоретического напора, K_h – коэффициент потерь проточной части; L^{\cdot} – символическое обозначение набора безразмерных геометрических параметров ПЧ, $\frac{\overline{\Gamma}_0 D}{Q}$ – безразмерный коэффициент осредненной циркуляции, характеризующий направление потока соответственно в сечении за направляющим аппаратом (НА); $K_Q = \frac{\omega D^3}{Q}$ – обобщенный режимный параметр.

Коэффициент потерь K_h может быть представлен в виде [9]:

$$K_{h} = K_{hn} + K_{h\kappa mp} + K_{h\kappa \mu} + K_{h\kappa \mu} + K_{h\kappa \mu} + K_{h\sigma \theta} + K_{h\sigma mm}, \qquad (5)$$

где K_h – коэффициент потерь в подводе, $K_{h\kappa mp}$, $K_{h\kappa \kappa p}$, $K_{h\kappa y \partial}$, $K_{h\kappa u}$, K_{hos} , K_{hommp} – соответственно коэффициенты потерь в РК: трения, кромочных, ударных, циркуляционных, от осевого вихря за РК и потери трения в отсасывающей трубе.

Использование функциональной модели рабочего процесса, представленной соотношениями (1-4), для численного моделирования энергетических характеристик требует конкретизации зависимостей коэффициентов теоретического напора $K_{HT} = K_{HT} \left(\frac{\overline{\Gamma}_0 D}{Q}, K_Q, L_{p\kappa} \right)$ и отдельных видов потерь $K_h = K_h \left(\frac{\overline{\Gamma}_0 D}{Q}, K_Q, L \right)$. В работе

[6] дано выражение для определения коэффициента теоретического напора в явном виде в предположении обтекания элементов РК по поверхностям тока, без учета их смещения с изменением режима. Если найдено представление функциональной зависимости K_{HT} в явном виде, то потери энергии находятся с помощью формулы (4).

Для построения зависимостей отдельных видов потерь от геометрических и режимных параметров также положена упрощенная кинематическая модель течения в элементах РК по поверхности тока, без учета их смещения с изменением режима [6].

При раскрытии функциональных зависимостей K_{hn} , $K_{h\kappa}$, K_{hom} , принята известная схема разделения потерь в решетках по их физической природе на потери трения, кромочные, ударные, циркуляционные, концевые. Общие потери в каждом из элементов ПЧ определяются суммированием этих видов потерь.

Коэффициент потерь в подвода K_{hn} равен:

$$K_{hn} = K_{hcn} + K_{h\kappa} + K_{hom}, \qquad (6)$$

где K_{hcn} , K_{hcm} , K_{hna} – коэффициенты потерь соответственно в спиральной камере, статоре, НА. В работах [5, 9] приведены выражения для определения этих коэффициентов потерь, которые здесь не приводятся в виду их громоздкости.

Для конкретизации функциональных зависимостей, выражающих коэффициенты потерь на участке ПЧ, включающем лопастную систему РК и отсасывающую трубу $K_{h\kappa} = f\left(\frac{\Gamma_o D}{Q}, K_Q, L_{\kappa}\right), \quad K_{hom} = f\left(K_Q, L_{om}\right)$ учитываются

следующие виды потерь: потери трения, кромочные, ударные, циркуляционные в РК; потери от осевого вихря, потери в отсасывающей трубе на трение и расширение [1, 10].

$$\overline{h}_{\kappa mp} = \frac{1}{Q} \int_{Q} \zeta_{mp} \frac{C^2{}_{2m}}{\sin^2 \beta_2 2g} dQ, \qquad (7)$$

$$\overline{h}_{\kappa\kappa\rho} = \int_{Q} \varsigma_{\kappa\rho} \frac{C^2_{2m}}{\sin^2 \beta_2 \ 2g} dQ, \qquad (8)$$

$$\overline{h}_{\kappa y \partial} = \frac{\chi}{Q} \int_{Q} \frac{\left(ctg \beta_1 - ctg \beta_2 \right)^2}{2g} C_{1m}^2 \ dQ , \qquad (9)$$

$$\overline{h}_{\kappa u} = \frac{1}{Q} \int_{Q} \frac{C_{2u}^2}{2g} dQ = \frac{1}{Q} \int_{Q} \frac{C_{2m}^2 c t g^2 \alpha_2}{2g} dQ, \qquad (10)$$

$$\overline{h}_{oc.e} = \frac{\left(rCu\right)_{2em}^2}{2gR_3^2} = \frac{r_{2em}^2 C_{2em}^2 ctg^2 \alpha_2}{2gR_3^2},$$
(11)

$$\overline{h}_{ommp} = \frac{\chi_{om}}{2gQ} \int_{Q} C_{2m}^2 dQ \,. \tag{12}$$

Развернутые выражения для коэффициентов видов потерь, указанных выше, получаются путем замены меридиональной скорости $C_{_{2m}} = B_2(l)Q$ [6] в формулах (7-12) и подстановки, полученных значений \bar{h}_i , в общее выражения для коэффициентов потерь $K_{h_i} = \frac{g\bar{h}_i D^4}{Q^2}$.

Зависимости, полученные таким образом для коэффициентов отдельных видов потерь, приведены ниже.

Коэффициент потерь трения:

$$K_{h\kappa mp} = \frac{1}{2n} \sum_{i=1}^{n} \frac{\zeta_{\kappa mp} \left(B_{2}\right)^{2}}{\sin^{2} \beta_{2}},$$
(13)

где $\varsigma_{\kappa mp} = \frac{2CI\left(\frac{l}{t_2}\right)}{\sin \beta_2} -$ коэффициент потерь трения элементарной решетки; $t_2 = \frac{2\pi r_2}{z} -$

шаг элементарной решетки на выходе; $\frac{l}{t_2}$ – густота решетки; Re = $\frac{C_2 l}{v}$ – число

Рейнольдса;
$$C_2 = \frac{C_{2m}}{\sin \beta_2}$$
 – скорость на выходе; $C = \frac{0.0153}{\text{Re}^{\frac{1}{7}}}$ – безразмерный

коэффициент.

Коэффициент кромочных потерь:

$$K_{h\kappa\kappa p} = \frac{1}{2n} \sum_{i=1}^{n} \frac{\zeta_{\kappa\kappa p} \left(B_{2i}\right)^{2}}{\sin^{2} \beta_{2}},$$
(14)

где $\zeta_{\kappa\kappa\rho} = \frac{0.2 r_2}{t_{2\kappa} \sin \beta_2}$ [11].

Коэффициент ударных потерь может быть представлен в виде полинома:

$$K_{h\kappa y\partial} = b_1 K_Q^2 + b_2 \left(\frac{\overline{\Gamma}_0 D}{Q}\right)^2 + b_3 K_Q \frac{\overline{\Gamma}_0 D}{Q} + b_4 K_Q + b_5 K \frac{\overline{\Gamma}_0 D}{Q} + b_6, \qquad (15)$$

где полиномиальные коэффициенты:

$$b_{1} = \frac{\chi_{y\partial}}{2n} \sum_{i=1}^{n} r_{1cp}^{2} , \ b_{2} = \frac{\chi_{y\partial}}{2n} \frac{1}{4\pi^{2}} \sum_{i=0}^{n} \frac{m_{i}^{2}}{r_{1cp}^{2}} , \ b_{3} = \frac{\chi_{y\partial}}{2n\pi} \sum_{i=1}^{n} m_{i} , \ b_{4} = -\frac{\chi_{y\partial}}{n} \sum_{i=1}^{n} r_{1cp} ctg \beta_{mi} B_{1i} ,$$
$$b_{5} = \frac{\chi_{y\partial}}{2n\pi} \sum_{i=1}^{n} \frac{m_{i}B_{1i}ctg \beta_{mi}}{r_{1cp}} , \ b_{6} = \frac{\chi_{y\partial}}{2n} \sum_{i=1}^{n} B_{1i}^{2} ctg \beta_{mi}^{2} ;$$

 $m = \frac{\Gamma_1}{\overline{\Gamma_1}}$ – коэффициент, учитывающий неравномерность входной циркуляции по высоте лопасти. В первом приближении **m** может быть принят равным 1; B_1 – коэффициент меридиональной скорости на входе в РК; χ_{yo} – коэффициент смягчения удара, который учитывает потери, обусловленные отрывом потока при обтекании входной кромки. По данным [10] $\chi_{yo} = 0.4 \div 0.8$.

Коэффициент циркуляционных потерь:

$$K_{h\kappa u} = c_2 K_Q^{2} + c_1 K_Q + c_0, \qquad (16)$$

где полиномиальные коэффициенты:

$$c_{0} = \frac{1}{2n} \left(\sum_{i=1}^{n} \left(1 + \frac{\pi \sin \beta_{2\Gamma cp_{i}} \sin \gamma_{2cp_{i}}}{z} \right) \right)^{2} (r_{2cp_{i}})^{2},$$

$$c_{1} = -\frac{1}{2n} \left(\sum_{i=1}^{n} 2B_{2} \frac{1}{tg \beta_{02i}} \left(1 + \frac{\pi \sin \beta_{2\Gamma cp_{i}} \sin \gamma_{2cp_{i}}}{z} \right) \right) r_{2cp_{i}}, c_{2} = \left(\frac{1}{2n} \right) \left(\sum_{i=1}^{n} B_{2i}^{2} \frac{1}{tg \beta_{02i}} \right).$$

Коэффициент потерь от осевого вихря:

$$K_{hom \, os} = d_2 K_Q^{\ 2} + d_1 K_Q + d_0, \qquad (17)$$

где полиномиальные коэффициенты:

$$d_{0} = 2 \frac{r_{2}^{2}}{D_{3}^{2}} \frac{B_{2}^{2}}{tg^{2}\beta_{02}}, \ d_{1} = -4 \frac{r_{2}^{3}}{D_{3}^{2}} \frac{B_{2}}{tg\beta_{02}} - 4 \frac{r_{2}^{3}}{D_{3}^{2}} \frac{B_{2}}{tg\beta_{02}} \frac{\pi}{z} \sin\beta_{2\Gamma} \sin\gamma_{2} ,$$
$$d_{2} = 2 \frac{r_{2_{i}}^{4}}{D_{3}^{2}} + 4 \frac{r_{2_{i}}^{4}}{D_{3}^{2}} \frac{\pi}{z} \sin\beta_{2\Gamma} \sin\gamma_{2} + 2 \frac{r_{2_{i}}^{4}}{D_{3}^{2}} \frac{\pi^{2}}{z^{2}} \sin\beta_{2\Gamma}^{2} \sin\gamma_{2}^{2} .$$

Коэффициент потерь в отсасывающей трубе на трение во входном диффузоре, колене и расширение во входном диффузоре:

$$K_{hommp} = \frac{8\chi_{om}}{\pi^2 (D'_3)^4},$$
 (18)

где χ_{om} - коэффициент потерь в отсасывающей трубе при осевом входе потока [10, 12]. Полный коэффициент гидравлических потерь ПЧ:

$$K_{h} = K_{hn} + K_{h\kappa mp} + K_{h\kappa \kappa p} + K_{h\kappa \mu} \left(\frac{\overline{\Gamma}_{0}D}{Q}, K_{Q}\right) + K_{h\kappa\mu} \left(K_{Q}\right) + K_{homos} \left(K_{Q}\right) + K_{hommp}.$$
 (19)

Окончательное выражение для K_h с учетом (13-18) имеет вид:

$$K_{h} = K_{hn} + \frac{1}{2n} \sum_{i=1}^{n} \frac{\mathcal{L}_{Kmp} \left(B_{2i}\right)^{2}}{\sin^{2} \beta_{2}} + \frac{1}{2n} \sum_{i=1}^{n} \frac{\mathcal{L}_{Kmp} \left(B_{2i}\right)^{2}}{\sin^{2} \beta_{2}} + b_{1} K^{2} \rho + b_{2} \left(\frac{\overline{\Gamma}_{0} D}{Q}\right)^{2} + b_{3} K_{Q} \frac{\overline{\Gamma}_{0} D}{Q} + b_{4} K_{Q} + b_{5} K \frac{\overline{\Gamma}_{0} D}{Q} + b_{6}$$

$$+ c_{2} K_{Q}^{2} + c_{1} K_{Q} + c_{0} + d_{2} K_{Q}^{2} + d_{1} K_{Q} + d_{0} + \frac{8 \chi_{om}}{\pi^{2} \left(D'_{3}\right)^{4}}$$

$$(20)$$

Расчет потерь в заданном диапазоне универсальной характеристики $n_{1} - Q_{1}$.

Полученные развернутые зависимости для коэффициентов всех видов потерь дают возможность определить относительные потери по формуле, вытекающие из (4).

$$\frac{\overline{h}_i}{H} = \frac{K_{h_i}}{g} \left(Q_I \right)^2, \tag{21}$$

где под K_{h_i} понимаются коэффициенты отдельных видов потерь.

Методика расчета отдельных видов потерь в заданном диапазоне приведенных параметров $n_I - Q_I$ сводится к следующему:

- определяются параметры оптимального режима [13];

– в зависимости от найденных параметров оптимального режима назначается диапазон изменений $n_I - Q_I$. Например, $0.8 n_{Ionm} \le n_I \le 1.2 n_{Ionm}$, $0.8 Q_{Ionm} \le Q_I \le 1.2 Q_{Ionm}$;

– из уравнения баланса энергии (2) в каждой режимной точке определяется величина $\frac{\Gamma_o D}{O}$;

– для каждой точки в заданном диапазоне режимных параметров находятся по формулам (13-18) коэффициенты отдельных видов потерь K_{h_i} и величины относительных потерь (21);

– по результатам строятся графики изменения отдельных видов относительных потерь $\frac{\overline{h}_i}{H} = f(Q_I)$ при $n_I = const$ и $\frac{\overline{h}_i}{H} = f(n_I)$ при $Q_I = const$.

На рисунке 1а,б приведены зависимости относительных потерь от приведенного расхода $\frac{\overline{h}_i}{H} = f(Q_I)$ при $n_I = n_{Ionm}$ и приведенных оборотов $\frac{\overline{h}_i}{H} = f(n_I)$ при $Q_I = Q_{Ionm}$ для рабочего колеса PO-500/I-26. Основные геометрические параметры проточной части с данным рабочим колесом приведены в работе [14]. Расчетные и опытные данные кривых суммарных гидравлических потерь (рис. 1), удовлетворительно согласуются друг с другом.

суммарные потери в подводе, 2 - суммарные потери в рабочем колесе и отсасывающей трубе,
 суммарные потери во всей проточной части, 4 - потери трения в рабочем колесе,

5 - кромочные потери, 6 - ударные потери, 7 - циркуляционные потери, 8 - потери от осевого вихря, 9 - потери трения в отсасывающей трубе, 10 - суммарные потери по опытным данным.

При $n_{I_{onm}}^{}= const$ наиболее интенсивно, по сравнению с другими видами потерь, изменяются циркуляционные потери. Они оказывают наиболее существенное влияние на вид зависимости $\frac{\bar{h}}{H} = f(Q_{I})$ при $n_{I_{onm}}^{}= const$ и следовательно на формирование кривой $\eta = f(Q_{I})$.

Режим с минимальными суммарными потерями (режим максимального гидравлического КПД) находится вблизи режима минимума циркуляционных потерь. Таким образом, циркуляционные потери являются определяющими в формировании режима максимального гидравлического КПД при $n_{lonm} = const$.

Рассмотрим изменение отдельных видов потерь при условии $Q_I = Q_{Ionm}$ и их влиянии на формирование кривой $\eta = f(n_I)$ при $Q_I = Q_{Ionm}$.

Из анализа графика видно сравнительно малое изменение всех видов потерь в зависимости от n_1 кроме ударных. Ударные потери существенно изменяются в зависимости от приведенных оборотов при $Q_1 = const$ и имеют четко выраженный минимум, поэтому ударные потери определяют n_{1onm} , т.е. положение режима максимального КПД по оборотам.

Приведенные данные (рис. 1) свидетельствуют также о существенной роли потерь энергии в подводящей части высоконапорной РО ГТ в диапазоне основных рабочих режимов.

Выводы

1. Получены аналитические зависимости потерь энергии в элементах проточной части РО ГТ от ее геометрических и режимных параметров. Эти зависимости могут быть использованы для численного анализа влияния режимных и геометрических параметров на отдельные виды потерь и на гидравлический КПД в целом.

2. Приведена методика расчета потерь энергии в заданном диапазоне режимных параметров $n'_I - Q'_I$ в элементах ПЧ, эти данные необходимые при проектировании ПЧ позволяют оценить влияние отдельных видов потерь (трения, кромочных, ударных и др.) на энергетические показатели ГТ.

Литература

1. Топаж Г.И. Расчет интегральных гидравлических показателей гидромашин// Л.: Изд-во Ленинградского университета, 1989. – 208с.

2. Савунин И.С., Топаж Г.И. Аналитические оценки энергетических показателей радиально-осевых гидротурбин// «Гидротехническое строительство» №6 2001г.

3. Колычев В.А. Построение математической модели рабочего процесса гидротурбины//Гидравлические машины.-Вып.26.-Харьков:ХПИ,1992.С.3-19

4. Колычев В.А., Миронов К.А., Тыньянова И.И., Цехмистро Л.Н., Сергеев А.В., Гончаров С.В. Применение упрощенной модели рабочего процесса для расчета и анализа энергетических характеристик высоконапорной радиально-осевой гидротурбины. //Вестник НТУ «ХПИ», № 11, Харьков, 2004 – С. 109-120

5. Колычев В.А., Дранковский В.Э. и др. Математическая модель сопротивления подводящей части радиально-осевой гидротурбины// Вестник ХГПУ, Вып.68, Харьков, 1999. – С. 35-48.

6. Колычев В.А. Кинематические характеристики потока в лопастных гидромашинах// Учебное пособие. Киев: ИСС. - 1995. – 272с.

7. Войташевский Д.А. Основы общей теории гидравлических решеток применительно к гидротурбинам.//Тр.ВНИИГидромаш. Вып.ХХХVII, М.-1968

8. Викторов Г.В. Гидродинамическая теория решеток.// Пособие для вузов по специальности «Гидравлические машины и средства автоматики». –М.: Высш.шк., 1969.

9. Колычев В.А., Дранковский В.Э. и др. Расчет гидродинамических характеристик направляющих аппаратов гидротурбины// Уч. пособие, НТУ «ХПИ», Харьков. - 2002. – 216с.

10. Этинберг И.Э., Раухман Б.С. Гидродинамика гидравлических турбин// Л.: Изд-во Машиностроение, 1978. – 280с.

11. Дейч М.Е., Зарянкин А.Б. Гидрогазодинамика: Учеб. пособие для вузов. – М.: Энергоатомиздат, -1984. – 384с.

12. Этинберг И.Э. Теория и расчет проточной части поваротно-лопастных гидромашин.//Изд-во Машиностроение, М-Л, 1965

13. Колычев В.А., Дранковский В.Э., Мараховский М.Б. Применение методов оптимизации для расчета параметров оптимального режима гидротурбины // Вестник ХГПУ.- Харьков, 1997.-Вып.8.-С.93-100.

14. Шмугляков Л.С.,Барлит В.В. и др. Разработка рабочих колес высоконапорных радиально-осевых гидротурбин.// «Изв. Высш. Учеб. Заведений. Энергетика», №1 1966. – С. 87 – 95.

© Колычев В.А., Дранковский В.Э., Цехмистро Л.Н., Миронов К.А., Тыньянова И.И., Сергеев А.В., 2005