УДК 621.165

В.П. СУББОТОВИЧ, канд. техн. наук; проф. НТУ «ХПИ»

ПОТОК ЧЕРЕЗ ВРАЩАЮЩУЮСЯ РЕШЕТКУ ОСЕВОЙ ТУРБОМАШИНЫ НА ПРОИЗВОЛЬНОЙ ПОВЕРХНОСТИ S₁

Рассмотрено относительное установившееся течение идеального газа через рабочую решетку осевой турбомашины. Поток разделен на слои произвольными поверхностями S_1 . Трехмерное течение сведено к двумерному без допущения о том, что радиальная компонента скорости и все производные в радиальном направлении сохраняют свои значения, найденные из осесимметричного решения на поверхности S_2 .

Ключевые слова: проточная часть турбомашины, квазитрехмерное течение, рабочая решетка, уравнение неразрывности, уравнение количества движения.

Введение

Эффективность проточных частей турбомашин в значительной степени определяется совершенством лопаток направляющих решеток и рабочих колес. Поэтому проблема создания высокоэкономичных и надежно работающих лопаточных аппаратов была и остается актуальной и находится в центре внимания специалистов, которые занимаются исследованиями и проектированием турбомашин. При достаточно высоком КПД, достигнутом к настоящему времени, повышать эффективность проточных частей можно только при использовании в задачах проектирования новых методов расчета течения, которые позволят находить нетрадиционные решения.

Постановка проблемы и ее современное состояние

Решение уравнений для трехмерного (3*D*) течения в решетке турбомашины является весьма трудоемкой задачей.

Рис. 1 – Поверхности S_1 и S_2

Для получения приближенного решения используется так называемый квазитрехмерный (Q3D) подход: сначала ищется осесимметричное решение в предположении, что это решение дает удовлетворительные данные по осредненным параметрам потока через решетку, а потом определяют параметры потока в межлопаточном канале как отклонения от средних параметров. Q3D течение в решетках турбин впервые было всесторонне исследовано Ч.Х. Ву, а его работа [1] стала классической. Полагается, что поток движется в слоях переменной толщины по двум поверхностям S₁ и S₂ (рис. 1). Задача решается для каждой поверхности отдельно с учетом взаимного влияния двухмерных потоков. В постановке Ч.Х. Ву в задачах на поверхностях S₁ и S₂ для описания течений

используются уравнения Эйлера. Расчеты таких течений выполняются методом кривизны линий тока или методами, использующими решения дифференциальных уравнений в частных производных [2].

© В.П. Субботович, 2013

В задачах на поверхностях S_1 , для которых полагается, что поверхности имеют ось симметрии, совпадающую с осью турбомашины, 3D-течение может быть сведено к 2D-течению, если течение в слое отнести к поверхности тока, лежащей посередине слоя. И нет необходимости делать допущения о том, что радиальная составляющая скорости и все производные в радиальном направлении являются однородными и сохраняют свои значения, соответствующие осесимметричному решению [3–5].

Сравнения расчетов невязкого 3*D*-течения и *Q*3*D*-течения [6, 7] показало, что отличия в получаемых результатах несущественны, а в ряде случаев наблюдалось лучшее качественное и количественное совпадение результатов экспериментов и расчетов, полученных при решении *Q*3*D*-задачи, чем при решении 3*D*-задачи.

Предмет исследования, основные определения и обозначения

Предмет исследования – относительное установившееся течение идеального газа в межлопаточном канале вращающейся решетки осевой турбомашины. Используется цилиндрическая система координат (r, z, θ), ось z совпадает с осью турбомашины.

Поверхности S_1 – произвольно скрученные поверхности, не имеющие осевой симметрии. Выбраны слой, ограниченный соседними поверхностями $S_1^{(i)}$ и $S_1^{(i+1)}$, и поверхность тока S_{1mid} , которая лежит посредине между указанными поверхностями. Течение в слое будем относить к срединной поверхности тока S_{1mid} (рис. 2).

Рис. 2 – Слой переменной толщины

Выберем произвольную точку поверхности S_{1mid} . Проведем на касательную плоскость, к поверхности S_{1mid} в этой точке (назовем плоскость К) и плоскости $\theta = \text{const}$ и z = const, проходящие через эту точку. Линии l₁ и m₁ – линии пересечения поверхности S_{1mid} с плоскостями $\theta = \text{const}$ и z = const, соответственно. Скорость потока в

относительном движении W будем представлять двумя проекциями *W*_l и *W_m* на прямолинейные направления *l* и m. Направление l определяется плоскости пересечением K с плоскостью $\theta = \text{const}$, направление *m* пересечением плоскости К _ с плоскостью z = const.В точке пересечения линий l_1 И m_1

направления l и m касаются их и имеют общее начало.

Угол между координатной осью z и направлением l обозначим δ_z , а угол между окружным направлением u и направлением $m - \delta_u$, тогда $\frac{1}{r} \frac{\partial r}{\partial \theta} = -\frac{n_{1u}}{n_{1r}} = \operatorname{tg} \delta_u$ и ∂r

 $\frac{\partial r}{\partial z} = -\frac{n_{1z}}{n_{1r}} = \operatorname{tg} \delta_z$, где n_1 – нормаль к поверхности S_{1mid} .

Вычислим угол σ_1 между направлениями l и m. Для этого рассмотрим два единичных вектора e_l и e_m , лежащие на этих направлениях. Эти векторы нетрудно

 $e_{l} = (\sin \delta_{z} \cos \delta_{z} \ 0)^{T},$ представить проекциями на оси координат: $e_m = (\sin \delta_\mu \ 0 \ \cos \delta_\mu)^T$. Запишем скалярное произведение этих векторов: $e_{lr} e_{mr} + e_{lz} e_{mz} + e_{lu} e_{mu} = |e_l| |e_m| \cos \sigma_1,$ где $|e_l| = |e_m| = 1.$ Откуда следует, что $\cos \sigma_1 = \sin \delta_z \sin \delta_u$, a $\sigma_1 = \arccos(\sin \delta_z \sin \delta_u)$.

Установим связь между проекциями скорости потока W_z , W_r , W_u на координатные направления и проекциями этой скорости W_l и W_m . При этом учтем, что вектор W и нормаль n_1 – ортогональные векторы и, следовательно, их скалярное произведение равно нулю, а именно: $W_r n_{1r} + W_u n_{1u} + W_z n_{1z} = 0$. Откуда следует:

$$W_r = W_u \operatorname{tg} \delta_u + W_z \operatorname{tg} \delta_z, \quad W_z = W_l \cos \delta_z, \quad W_u = W_m \cos \delta_u.$$
(1)

Введем, как предложил сделать Ч.Х. Ву [1], две производные:

$$\frac{\partial_{\theta}}{\partial z} = \frac{\partial}{\partial z} + \frac{\partial}{\partial r}\frac{\partial r}{\partial z}, \qquad \frac{1}{r}\frac{\partial_{z}}{\partial \theta} = \frac{1}{r}\frac{\partial}{\partial \theta} + \frac{1}{r}\frac{\partial}{\partial r}\frac{\partial r}{\partial \theta}, \qquad (2)$$

где первая берется вдоль линии l_1 по переменной z на плоскости θ = const, а следующая – вдоль линии m_1 по переменной θ на плоскости z = const.

Вывод уравнения неразрывности

На поверхности тока S_{1mid} выберем элемент поверхности dS_{1mid} , ограниченный линиями пересечения поверхности S_{1mid} с плоскостями $\theta = \text{const}$, $\theta + d\theta = \text{const}$, z = const и z + dz = const. В каждой точке элемента dS_{1mid} проведена нормаль до пересечения с поверхностями тока $S_1^{(i)}$ и $S_1^{(i+1)}$, и получен элементарный объем с нормальной толщиной $\tau = \tau(r, z, \theta)$, и весь слой разделен на элементарные объемы.

Рассмотрим элементарный объем, ребра которого обозначим *AB*, *CD*, *A'B'* и *C'D'* (рис. 3).

Рис. 3 – К выводу уравнения неразрывности Для ребра *AB* толщина слоя – τ , а радиус элемента dS_{1mid} – *r*. Тогда величины ребер *CD* и *A'B'* равны $\tau + \frac{\partial_{\theta} \tau}{\partial z} dz$ и $\tau + \frac{\partial_{z} \tau}{\partial 0} d\theta$, а величину ребра *C'D'* найдем так:

$$\tau + \frac{\partial_z \tau}{\partial \theta} d\theta + \frac{\partial_{\theta}}{\partial z} \left(\tau + \frac{\partial_z \tau}{\partial \theta} d\theta \right) = \tau + \frac{\partial_z \tau}{\partial \theta} d\theta + \frac{\partial_{\theta} \tau}{\partial z} dz + \frac{\partial_{\theta z}^2 \tau}{\partial \theta \partial z} d\theta dz.$$

Определим площади граней элементарного объема, через которые проходит поток: $\left(\tau + \frac{1}{2}\frac{\partial_{\theta}\tau}{\partial z}dz\right)\sec\delta_{z}dz$ для грани *ABCD*; $\left(\tau + \frac{1}{2}\frac{\partial_{z}\tau}{\partial \theta}d\theta\right)\sec\delta_{u}rd\theta$ для грани *ABB'A'*; $\left(\tau + \frac{\partial_{z}\tau}{\partial \theta}d\theta + \frac{1}{2}\frac{\partial_{\theta}\tau}{\partial z}dz + \frac{1}{2}\frac{\partial_{\theta}^{2}\tau}{\partial \theta \partial z}d\theta dz\right)\left(\sec\delta_{z} + \frac{\partial_{z}\sec\delta_{z}}{\partial \theta}d\theta\right)dz$ для грани *A'B'C'D'*;

ISSN 2078-774Х. Вісник НТУ «ХПІ». 2013. № 14(988)

$$\left(\tau + \frac{\partial_{\theta}\tau}{\partial z}dz + \frac{1}{2}\frac{\partial_{z}\tau}{\partial\theta}d\theta + \frac{1}{2}\frac{\partial_{z\theta}^{2}\tau}{\partial z\partial\theta}dz d\theta\right)\left(\sec\delta_{u} + \frac{\partial_{\theta}\sec\delta_{u}}{\partial z}dz\right)\left(r + \frac{\partial_{\theta}r}{\partial z}dz\right)d\theta \qquad \text{для} \qquad \text{грани}$$

CDD'C', и массовые расходы через единицу площади: $\frac{W_m}{v}\sin\sigma_1$ для грани ABCD; $\frac{W_m}{v}\sin\sigma_1 + \frac{\partial_z}{\partial\theta} \left(\frac{W_m}{v}\sin\sigma_1\right) d\theta$ для A'B'C'D'; $\frac{W_l}{v}\sin\sigma_1$ для грани ABB'A' и $\frac{W_l}{v}\sin\sigma_1 + \frac{\partial_\theta}{\partial z} \left(\frac{W_l}{v}\sin\sigma_1\right) dz$ для грани CDD'C'.

Приравняем потоки, входящие в элементарный объем через грани *ABCD*, *ABB'A'* и выходящие из него через грани *A'B'C'D'*, *CDD'C'*:

$$\frac{W_m}{v}\sin\sigma_1\left(\tau + \frac{1}{2}\frac{\partial_{\theta}\tau}{\partial z}dz\right)\sec\delta_z dz + \frac{W_l}{v}\sin\sigma_1\left(\tau + \frac{1}{2}\frac{\partial_z\tau}{\partial\theta}d\theta\right)\sec\delta_u r d\theta = \\ = \left[\frac{W_m}{v}\sin\sigma_1 + \frac{\partial_z}{\partial\theta}\left(\frac{W_m}{v}\sin\sigma_1\right)d\theta\right] \times \\ \times \left(\tau + \frac{\partial_z\tau}{\partial\theta}d\theta + \frac{1}{2}\frac{\partial_{\theta}\tau}{\partial z}dz + \frac{1}{2}\frac{\partial_{\theta z}^2\tau}{\partial\theta\partial z}d\theta dz\right)\left(\sec\delta_z + \frac{\partial_z\sec\delta_z}{\partial\theta}d\theta\right)dz + \\ + \left[\frac{W_l}{v}\sin\sigma_1 + \frac{\partial_{\theta}}{\partial z}\left(\frac{W_l}{v}\sin\sigma_1\right)dz\right] \times \\ \times \left(\tau + \frac{\partial_{\theta}\tau}{\partial z}dz + \frac{1}{2}\frac{\partial_z\tau}{\partial\theta}d\theta + \frac{1}{2}\frac{\partial_z^2\tau}{\partialz\partial\theta}dz d\theta\right)\left(\sec\delta_u + \frac{\partial_{\theta}\sec\delta_u}{\partial z}dz\right)\left(r + \frac{\partial_{\theta}r}{\partial z}dz\right)d\theta.$$

Выполним перемножение и исключим слагаемые третьего и более высоких порядков малости. В результате получим уравнение:

$$\begin{bmatrix} \tau \sec \delta_z \frac{\partial_z}{\partial \theta} \left(\frac{W_m}{v} \sin \sigma_1 \right) + \frac{W_m}{v} \sin \sigma_1 \sec \delta_z \frac{\partial_z \tau}{\partial \theta} + \frac{W_m}{v} \sin \sigma_1 \tau \frac{\partial_z \sec \delta_z}{\partial \theta} \end{bmatrix} d\theta dz + \\ + \begin{bmatrix} \tau \sec \delta_u r \frac{\partial_\theta}{\partial z} \left(\frac{W_l}{v} \sin \sigma_1 \right) + \frac{W_l}{v} \sin \sigma_1 \sec \delta_u r \frac{\partial_\theta \tau}{\partial z} + \\ + \frac{W_l}{v} \sin \sigma_1 \tau r \frac{\partial_\theta \sec \delta_u}{\partial z} + \frac{W_l}{v} \sin \sigma_1 \tau \sec \delta_u \frac{\partial_\theta r}{\partial z} \end{bmatrix} d\theta dz = 0$$

или

$$\frac{\partial_z}{\partial \theta} \left(\frac{W_m}{v} \sin \sigma_1 \tau \sec \delta_z \right) + \frac{\partial_\theta}{\partial z} \left(\frac{W_l}{v} \sin \sigma_1 \tau r \sec \delta_u \right) = 0.$$
(3)

Уравнение (3) имеет в левой части только два слагаемых, которые можно представить как разность вторых смешанных производных непрерывной функции (функции тока), введение которой обратит уравнение неразрывности в тождество.

Система уравнений, описывающая течение на поверхности S₁

Уравнение количества движения для трехмерного установившегося относительного движения идеального газа запишем в скалярном виде:

$$W_{z}\frac{\partial W_{r}}{\partial z} + W_{r}\frac{\partial W_{r}}{\partial r} + \frac{W_{u}}{r}\frac{\partial W_{r}}{\partial \theta} - \frac{W_{u}^{2}}{r} - \omega^{2}r - 2\omega W_{u} = -v\frac{\partial p}{\partial r}; \qquad (4)$$

$$W_{z}\frac{\partial W_{z}}{\partial z} + W_{r}\frac{\partial W_{z}}{\partial r} + \frac{W_{u}}{r}\frac{\partial W_{z}}{\partial \theta} = -v\frac{\partial p}{\partial z};$$
(5)

$$W_{z}\frac{\partial W_{u}}{\partial z} + W_{r}\frac{\partial W_{u}}{\partial r} + \frac{W_{u}}{r}\frac{\partial W_{u}}{\partial \theta} + \frac{W_{r}W_{u}}{r} + 2\omega W_{r} = -v\frac{1}{r}\frac{\partial p}{\partial \theta}.$$
(6)

Для замены частных производных по координатным направлениям *z* и θ воспользуемся выражениями (2), а проекции скорости потока W_z , W_r и W_u заменим проекциями W_m и W_l , учитывая связи (1). Далее сложим уравнения (4) и (5), предварительно умножив уравнение (4) на tg δ_z , и уравнения (4) и (6), предварительно умножив уравнение (4) на tg δ_u . Полные производные проекций относительной скорости потока по переменной *z*, взятые вдоль линии тока определим так: $\frac{dW_l}{dz} = \frac{\partial_{\theta}W_l}{\partial z} + \operatorname{ctg}\beta \frac{1}{r} \frac{\partial_z W_l}{\partial \theta}, \quad \frac{dW_m}{dz} = \frac{\partial_{\theta}W_m}{\partial z} + \operatorname{ctg}\beta \frac{1}{r} \frac{\partial_z W_m}{\partial \theta}, \quad rze \operatorname{ctg}\beta = \frac{W_u}{W_z}$. Суммы членов уравнений, которые не содержат производные проекций скорости W_m и W_l , обозначим

$$\begin{split} A_{1}, A_{2}, A_{3}: \\ A_{1} &= W_{l}W_{m} \bigg(\frac{\cos \delta_{u}}{r} \frac{\partial_{z} \cos \delta_{z}}{\partial \theta} + \cos \delta_{z} \frac{\partial_{\theta} \cos \delta_{u}}{\partial z} \bigg) + \\ &+ W_{m}^{2} \frac{\cos \delta_{u}}{r} \frac{\partial_{z} \sin \delta_{u}}{\partial \theta} + W_{l}^{2} \cos \delta_{z} \frac{\partial_{\theta} \sin \delta_{z}}{\partial z} - \frac{\left(W_{m} \cos \delta_{u}\right)^{2}}{r} - \omega^{2}r + 2\omega W_{m} \cos \delta_{u}; \\ A_{2} &= W_{l} \bigg(W_{m} \frac{\cos \delta_{u}}{r} \frac{\partial_{z} \cos \delta_{z}}{\partial \theta} + W_{l} \cos \delta_{z} \frac{\partial_{\theta} \cos \delta_{z}}{\partial z} \bigg); \\ A_{3} &= W_{l} \bigg(W_{m} \frac{\cos \delta_{u}}{r} \frac{\partial_{z} \cos \delta_{u}}{\partial \theta} + W_{l} \cos \delta_{z} \frac{\partial_{\theta} \cos \delta_{u}}{\partial z} \bigg) + \\ &+ \frac{W_{m}W_{l} \cos \delta_{u} \sin \delta_{z} + W_{m}^{2} \cos \delta_{u} \sin \delta_{u}}{r} + 2\omega \left(W_{l} \sin \delta_{z} + W_{m} \sin \delta_{u} \right). \end{split}$$

В результате трехмерное течение отнесено к срединной поверхности S_{1mid} , и уравнение количества движения представлено двумя проекциями, а именно:

$$W_{l}\cos\delta_{z}\frac{dW_{l}}{dz}(\cos\delta_{z}+\sin\delta_{z}\,\mathrm{tg}\delta_{z})+$$

$$+W_{l}\cos\delta_{z}\frac{dW_{m}}{dz}\sin\delta_{u}\,\mathrm{tg}\,\delta_{z}+A_{1}\,\mathrm{tg}\,\delta_{z}+A_{2}=-v\frac{\partial_{\theta}p}{\partial z}; \qquad (7)$$

$$W_{l}\cos\delta_{z}\frac{dW_{l}}{dz}\sin\delta_{z}\,\mathrm{tg}\,\delta_{u}+$$

$$W_{l}\cos\delta_{z}\frac{dW_{m}}{dz}(\cos\delta_{u}+\sin\delta_{u}\,\mathrm{tg}\,\delta_{u})+A_{1}\,\mathrm{tg}\,\delta_{u}+A_{3}=-v\frac{1}{r}\frac{\partial_{z}p}{\partial\theta}. \qquad (8)$$

Для того, чтобы получить систему уравнений, описывающую течение через подвижную решетку на скрученной произвольным образом поверхности S_1 , систему уравнений (7, 8) следует дополнить уравнением неразрывности (3), а так же уравнением сохранения энергии в относительном движении и уравнением изоэнтропийного процесса, записанными вдоль линии тока.

+

Выводы

Вектор скорости потока задается проекциями на два не ортогональных прямолинейными направления, которые – касательные к линиям пересечения произвольно скрученной поверхности тока S_1 с плоскостями θ = const u z = const.

Угол между направлениями, на которые проектируется вектор скорости потока, однозначно определяется на основе геометрических характеристик поверхности S_1 .

Для постановки прямой и обратной задач теории решеток достаточно задать граничные условия в виде, предложенном в [4, 5], а методы решения прямой и обратной задач на поверхности вращения без принципиальных изменений будут эффективными и для задач на произвольно скрученной поверхности S_1 .

Результаты исследования, приведенные в статье, – мотив для разработки на поверхности S_2 новых, без осевой симметрии, прямой и обратной задач. Цель – обратная задача, которая сначала определит меридиональные очертания заданной средней поверхность S_2 межлопаточного канала, а потом – всю его геометрию (обратные задачи на поверхностях S_1), включая геометрию активной части лопаток.

Список литературы: 1. Wu, C.-H. A General theory of three-dimensional flow in subsonic and supersonic turbomachines of axial -, radial -, and mixed - flow types [Text] / C.-H. Wu // NACA Tech. - 1952. - Note 2604. – 93 р. 2. Дорфман, Л.А. Ускорение оптимизационных расчетов проточных частей паровых турбин [Текст] / Л.А. Дорфман, Г.И. Архипцев // Энергомашиностроение. – 1986. – № 11. – С. 19-21. 3. Жуковский, М.И. Аэродинамический расчет потока в осевых турбомашинах [Текст] / М.И. Жуковский. – Л.: Машиностроение, 1967. – 288 с. 4. Субботович, В.П. Обтекание трехмерным потоком решетки профилей турбомашины на поверхности вращения [Текст] / В.П. Субботович, А.Ю. Юдин, Ф.К. Там // Энергетические и теплотехнические процессы и оборудование. Вестник НТУ «ХПИ». – Х.: НТУ «ХПИ», 2008. – № 6. – С. 41-46. 5. Субботович, В.П. Обратная задача теории решеток на осесимметричной поверхности тока [Текст] / В.П. Субботович, А.Ю. Юдин, Ф.К. Там // Энергетические и теплотехнические процессы и оборудование. Вестник НТУ «ХПИ». – Х.: НТУ «ХПИ», 2009. – № 3. – C. 56-61. - ISSN 2078-774X. 6. Chima, R.V. Comparison of Two- and Three-Dimensional Flow Computations With Laser Anemometer Measurements in a Transonic Compressor Rotor [Text] / R.V. Chima, A.J. Strazisar // Trans. ASME: J. Eng. Power. - 1983. - 105, № 3. - P.596-605. 7. Miller, D.P. The relative merits of an inviscid Euler 3D and quasi-3D analysis for the design of transonic rotors [Text] / D.P. Miller, A.C. Bryans // ASME Pap. - 1988. - GT 69. - P. 1-13.

УДК 621.165

Поступила в редколлегию 15.02.13

Поток через вращающуюся решетку осевой турбомашины на произвольной поверхности S₁ [Текст] / В.П. Субботович // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. – Х.: НТУ «ХПІ», 2013. – № 14(988). – С. 43-48. – Бібліогр.: 7 назв. – ISSN 2078-774Х.

Розглянута відносна стала течія ідеального газу крізь робочу решітку осьової турбомашини. Потік розділений на шари поверхнями течії S_I , у яких немає вісі симетрії. Тривимірна течія зведена до двовимірної без припущення про те, що радіальна складова швидкості і всі похідні в радіальному напрямі зберігають свої величини, які відповідають розв'язку вісесиметрічної задачі на поверхні течії S_2 .

Ключові слова: проточна частина турбомашини, квазітривимірна течія, робоча решітка, рівняння нерозривності, рівняння кількості руху.

In the inter-blade channel of the rotor cascade of axial turbomachine the relative state flow of ideal gas was examined. The flow was separated on layers by the stream-surfaces S_1 . Stream-surfaces do not have the axis of symmetry. The 3D-flow was reduced to 2D-flow without assumption that radial component of velocity and all derivatives in radial direction save the values from axial-symmetric decision on the stream-surface S_2 .

Keywords: flowing pass of turbomachine, quasi-three-dimensional flow, rotor cascade, equation of continuity, momentum equation.