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PREPROPRIATE ANALYSIS OF TIME SERIES BY METHODS OF FRACTAL ANALYSIS AND
PHASE TRAJECTORIES

The procedure of the qualitative analysis of time series, for which the hypothesis of trend existence isn’t confirmed, with application of the methods of
nonlinear dynamics and the theory of chaos, is presented. The real time series characterizing prevalence of various skin diseases in Ukraine are consid-
ered. The basis for similar researches is Takens’s theorem. The randomness of the studied dynamical system given by time realizations is established
by means of Lyapunov’s indicator. The state stability is estimated by Hausdorf’s fractal dimension and the fractality index. Visual evaluation of the
time series was carried out by means of the phase trajectory restoration procedure. As a result of the analysis of phase points in the phase space the
split attractor is indicated, which gives the chance to speak about its bifurcation.
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ity index, phase space, attractor, bifurcation of an attractor.

1. B.AHTOHOBA, H. O. HIKIHA

MPEANPOIHO3HUM AHAJII3 YACOBUX PAJIB METOJAMU ®PAKTAJIBHOIO AHAJII3Y TA

®A30BUX TPAEKTOPI
3anponoHOBaHO MPOLEAYPY SAKICHOTO aHANi3y YaCOBUX PAMIB, IS SIKMX HE MiATBEPKYETHCS TiMoTe3a Npo HAasSBHICTh TPEH/A, i3 3aCTOCYBAHHAM Me-
TOJiB HeNMiHIHHOT AUHAMiKy, Teopii Xaocy. Po3risiHyTo peasbHi 4acoBi psay, IO XapaKTepU3ylOTh MOIIHPEHHS Pi3HUX MIKIPHUX 3aXBOPIOBAHb B YKpa-
iHi. OOrpyHTYBaHHAM sl OJIOHUX J0CTIDKEHD € TeopeMa TakeHca. XaoTUUHICTh OCIIPKYBAHOT JMHAMIYHOI CUCTEMH, 11O 3a/laHa YaCOBUMM pealli-
3allisIMH, BCTAHOBJICHA 3a JI0TIOMOTOI0 Moka3HuKa JlamyHoBa. OriHKa CTIMKOCTI CTaHy OLiHIOBaiach (GpakTaipHOIO po3MipHicTIo Xaycaopda i iHaek-
coM (hpaxTanbHOCTI. BizyanbHa oLliHKa 4acoBOTO sy MPOBOIMIIACE 32 JOTIOMOTOIO MPOLIEYPH BiTHOBIEHHS (pasoBUX TpaekTopiit. B pe3ynpraTi ana-
i3y $ha30BUX TOYOK (ha30BOro NPOCTOPY BUSBJICHO PO3LICIUIEHUIT aTPaKTop, IO 1a€ MOXKIIMBICTH TOBOPHUTH MO iforo Oidypkaito.

Kuio4oBi ci10Ba: sikicHMI aHaIi3, 4acoBMil psij, METOAM HEIiHIMHOI AMHAMIKH, TEOpis Xaocy, MokasHUK JIamyHoBa, pakTajabHa pO3MIPHICTB,
iHnekc ¢paxranpHOCTI, (ha3oBUit POCTip, aTpakTop, Oidypkaris aTpakTopa.

H.B. AHTOHOBA, H. A. YHKHHA

MPEANPOTHO3HBIN AHAJIN3 BPEMEHHBIX PSIIOB METOIAMHU ®PAKTAJBHOT'O AHAJIU3A

U ®A30BBIX TPAEKTOPUI
ITpeioxkeHa MpoLeaypa KaueCTBEHHOTO aHaIN3a BPEMEHHBIX PSIOB, UIS KOTOPBIX HE MOJITBEPIKIACTCS TMIIOTe3a 0 HATMYUM TPEHA, ¢ IPUMEHEHHEM
METO/IOB HEJIMHEHHO!N JMHAMUKH, TEOPHU Xaoca. PacCMOTpEeHBI pealbHble BPEMEHHBIE PS/bl, XapaKTEPU3YIONIME PAaCHPOCTPAHEHHOCTh Pa3JIMYHBIX
KOXKHBIX 3a0oieBanuii B Ykpanne. OCHOBaHHEM U1 OJOOHBIX MCCIIEI0BAHN SBIIseTCs TeopeMa TakeHca. XaOTHYHOCTh M3y4aeMoil JMHAMU4YECKOM
CHCTEMBI, 33[IaHHOI BPEMEHHBIMU PEAIN3aLMsAMH, YCTAHOBJICHA C MOMOIIBIO ToKa3arelns JlsmyHoBa. OleHKa YCTONYUBOCTH COCTOSIHUS OLICHUBANAch
(pakTanbHOIi pasMepHOCThIO Xaycaopha u HHAEKCOM (pakTanbHOCTH. Bu3yanbHas OleHKa BpeMEHHOTO psijia MPOBOAMIIACH C TIOMOIIBIO MPOLETYPhI
BOCCTAaHOBJICHHS (pa30BBIX TpaekTopuii. B pesynbrare aHannsa (pa3oBbIX ToYek (asoBOro NPOCTPAHCTBA BBISABJICH PACUICIUICHHBII aTTPaKTOp, 4TO Ja-
€T BO3MOXXHOCTb TOBOPUTE O €ro Oudypkanmm.

KitioueBble ¢j10Ba: KaueCTBEHHbIN aHAIN3, BPEMEHHOMN DS/, METO/bI HEJIMHEHHOM AMHAMHUKH, TEOpHs Xaoca, rokasareis JlsmyHosa, dpak-
TallbHas Pa3MEPHOCTh, MHAEKC (PpaKTaTbHOCTH, (pa3oBOEe MPOCTPAHCTBO, aTTPAKTOP, OM(ypKaLHs aTTPaKTopa.

Introduction. The system model is constructed by observed variables. In medicine, ecology, sociology the dynam-
ics of a research object is tracked by time realizations — time series. As a rule, in the time series analysis the methods
giving the quantitative forecast (point or interval) are used. For the time series, for which the hypothesis of trend exis-
tence isn’t confirmed, such methods aren’t productive.

Application of the nonlinear dynamical system theory methods to the time series analysis is based on the hypothe-
sis that the available series describes the behavior of the studied system, and it is the only available information about
this system. According to the well-known Takens’s theorem [1] a single time series suffices for an adequate description
of a dynamical system as a whole.

The analysis of time series by the methods of nonlinear dynamical system theory is becoming widely applied. In
terminology of this theory the process described by time series contains the deterministic chaos, or, in other words, is
chaotic. From the linear analysis method point of view they are stochastic processes. The nonlinear analysis demon-
strates that neither can these processes be considered as deterministic ones, nor are they absolutely random. In other
words, only short-term forecasting of the system condition is possible with certain accuracy.

Today, the chaos theory remains one of the most widespread ways of forecasting and researching the dynamical
system state stability. The purpose of the system stability analysis is identification of all its stationary states. If at least
one of the stationary states is for any reasons threatening or undesirable, then its existence gives the chance to develop
the preventive measures reducing the probability of the system transition to this state.

One of the most common forms of stability loss is the system state randomization, [1]. The mechanisms of system
transition to such state are studied insufficiently. However, the fact that such state is possible requires developing new
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system research methods. The research tools of the chaos theory are attractors and fractals. The two prevailing dynami-
cal system randomness criteria are Lyapunov’s indicator and the fractal dimension.

Related publications survey. In [3] it is proved that the low information content of statistical indicators results
from the fractal properties intrinsic to the behavior of time series, which empirical distribution function does not con-
form with the normal distribution. Therefore for detection of the general tendency of time series behavior it is offered to
use chaos theory methods giving the chance to carry out the qualitative analysis of the studied time series at the stage of
prepropriate analysis. In relation to the dynamics of social and natural systems and processes the chaos theory not only
explains the bifurcation phenomena (big falling or big emissions), but also claims that they can't be predicted because
the nature isn't a number of the repeating regularities, but is characterized by local randomness and a global order. For
this reason many analysts have reasonably assumed that the fractal nature of time series will help them to recognize new
regularities in the chaotic movement, [4 - 7].

The main formal characteristics of chaotic processes in the nonlinear dynamical system theory are the phase space
and the attractor. One of the system chaotic behavior features is instability of the trajectories belonging to the attractor.
Quantitatively this instability is measured by Lyapunov’s characteristic indicators. Since the existence of the highest
positive Lyapunov’s indicator is the criterion of chaotic dynamics, the possibility of its evaluation on the basis of proc-
essing the given time series is naturally interesting.

Commonly, nonlinear dynamical systems have fractal attractors, which means that unstable phase trajectories of
the systems tend to become fractals in time, [3]. An important moment of the fractal approach is the influence of the
random process prehistory on the behavior of the system today. Therefore, this method of the analysis of time series is of
particular interest to the researchers.

As a rule, in nature real pure fractals don't exist, and it is possible to speak only about the fractal phenomena. They
should be considered merely as models which are fractals approximately in statistical sense. A lot of experimental data
have fractal statistics, which can be analyzed and modeled by means of fractal analysis methods, [4, 5].

One of the most popular directions of the fractal analysis is over time studying of the dynamics of such characteris-
tic as fractal dimension. This indicator characterizes the repeatability of statistical values of natural time series with
changing scale. The fractal dimension introduced by Hausdorf as D -dimension is the main characteristic of fractal
structures, [6, 7].

There are several methods of determining the fractal dimension for time series considered as a set of observable pa-
rameters of the studied dynamical system over time. We’ll focus on two of them. Firsts of all, it is the classical way of
cellular coverage of the time series graphic representation in which the fractal dimension is defined the same way as for
geometrical fractals. The second approach for studying fractal time series was offered by Benoit Mandelbrot. It is based
on the researches of the English scientist Hurst and called the R/S method.

For the majority of real time series it is impossible to determine the fractal dimension analytically. Therefore, the
value D is quantified, for example, through the Hurst index. In the time series analysis the influence of the present on

the future can be expressed by the ratio C = 22" -1, [8].

If a set of flat geometrical figures (cells) with the general geometrical parameter & is considered as the time series
approximation, then by Hausdorf's definition the D -dimension is determined by the law S(8) ~ 8°° as & — 0, where
S(d) is the total area of the cells with fragmentation scale & .

One of the time series stability indicators is the fractality index #, [9 — 11]. In particular, the advantage of this in-

dex before other fractal indicators is that for computing this index with an acceptable accuracy data two orders less than
for computing the Hurst indicator H suffice. It gives the chance to carry out the time series local fractal analysis based
on the properties of the function u(t) .

Chaos in dynamical systems implies dynamics’ evolution sensitivity to initial conditions changes. It means that two
trajectories, close to each other in the phase space at some initial timepoint, diverge exponentially after rather small on
the average time t. If d, is the distance between two starting points at the initial timepoint, then after time t the dis-
tance between the trajectories leaving these points becomes d(t)=d, e or d,=dg -e?M in case the system is de-

scribed by difference equations.
The numbers A and A are called Lyapunov’s indicators. Variable d (t)(d,) can’t increase infinitely because of

the system limitation. It gives the opportunity to determine the measure of trajectory divergence by averaging the expo-
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nential growth on trajectory points. Then Lyapunov’s indicator can be written down as
1 &, dft
i 4()
th—toia d(ty)
It is possible to calculate A (A) in an explicit form only in some cases, such as, for instance, the case of one-

ﬂ(:

dimensional displays: x,,; = f (x,). When f (x)is smooth and differentiable the distance between the neighboring tra-

jectories is measured by the value | f’(x)| . In the case of chaos criterion it is enough to calculate the highest Lyapunov’s

indicator only.

The review on Lyapunov’s indicators and their usage as the movement randomness criterion is given in [2]. Here
the references to the existing software products for calculation of these indicators can also be found.

One of the widespread ways of time series visual evaluation relies on the phase trajectory restoration procedure.
Possibilities of such phase portrait visual analysis are very limited. However, for identification of complex nonperiodic
time realization the phase portrait analysis gives sometimes more information than the data spectral analysis. The advan-
tage of this approach is also that it is applied independently of the fact whether the research object model is constructed
or not. Since it is not always possible to receive a suitable model in practice, the real way of the system stability analysis
is the nonmodel way of the phase trajectory behavior analysis.

Problem setting. The purpose of this research is the analysis of stability of the morbidity indicator value for vari-
ous skin pathologies in Ukraine by its time realization using the phase trajectory analysis and qualitative fractal analysis
methods.

We determine the fractal dimension for time series by the classical method of cellular coverage of time series
graphic image.

Let the observations of scalar equidistant time series {x(t; )}i"il be considered on the interval [0, T]. We divide the
interval into m parts by the points 0=17,, 7}, ..., 7, =T , Where 7, —7,;, =6, 0 =T/m (i =1,m). We denote such uni-
form partition of the time series {x(t; )}i"il realization interval by @, .

We cover the time series image with rectangles with the base & (scale J). It is clear, that the height of the rectan-
gle on the interval [z, 7;_;] is equal to the variation range A (J) of the time series values x(t;) on this interval. We cal-

m
culate the value V(9) = z A (0) . Then the area of such minimal coverage is S(0) =V (J)-6 .
i=1

By comparing this equality with Hausdorf’s D -dimension definition, in [9] it is proved that S(8)~&>° and
V(8)=6*,where u= D, -1.Thevalue D, is called the minimal coverage dimension, and x is the fractality index.
When calculating the index u in the present research the sequence of n enclosed partitions «;,, where m=2",
n=0,1, 2,3 4,5, 6 was used. Each partition consisted of 2" intervals containing 257" observations X(t;) . At the same
time, the periods with abnormally large values x(t;) were excluded from the available realization of the time series

{x(; )}iN:l. The analyzed time series {X(; )}i“i1 and constructed for it minimal coverage corresponding to n=3 is repre-

sented in fig. 1.
For each partition e, the value V(J) was calculated. The received results of calculations are given below in ta-
ble 1.

Table 1 — Value of variable V depending on partition scale ¢

0 1 2 3 4 5 6
2352,6 798,8 449,5 439,4 434,6 309,9 170
1 2 4 8 16 32 56
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Fig. 1 — Minimal cellular coverage for time series
characterizing morbidity of some skin pathologies in Ukraine since 1958.

In fig. 2 the plot of dependence V (8) in double logarithmic scale is represented. For determination of the fractality

index u from these data by the Ordinary Least Squares method the regression line equation y=kx+b was set up.
Then, according to [10] u«=-k.

oV
g
1 T
; =—Trend line
5 e
4 - . .
1] 1 2 3 4 Ind

Fig. 2 — Dependence of the variable V (6) in double logarithmic scale.
In our case the regression equation has the form: y =—-0,66x+7,41. Therefore, at the level of reliability o =0,90
the fractality index of the studied seriesis 4 =0,66+0,073.

In the present research the highest Lyapunov’s indicator A(x, ) was estimated by the method of comparing phase
trajectory evolution points. According to this method, the value A(x,) for the trajectory x; = x(t;), i =1 N of the dis-
crete time series X, = f (X ) was estimated by the formula

o1y
Ax) = fim 37| (x).

corresponding to the definition of A(x ) under the condition that the limit on the right-hand side exists. Calculation re-
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sults of the highest Lyapunov’s indicator A(x,) for the time series given in fig. 1 are represented in table 1.

The carried-out calculations have demonstrated that for the given time series A(x,) =118, i.e. A(%)>0, there-
fore, the trajectory is chaotic.

Table 2 — Evaluation of the highest Lyapunov’s indicator (x,)

N iln (%) A(%)
=

10 4,013525 0,401353

20 3,092552 0,154628

30 21,13338 0,704446

40 39,99184 1,080860

47 55,486649 1,180567

Often the situations occur when one lacks the observed values for the dynamical description of an object, that is for
setting its state X(t). There exist several methods for increasing the number of variables. The time delay method is the
simplest and the most popular one. In case of scalar time series the consecutive values of the series {x(t; )}i“i1 separated
by some interval 7 (delay period) are used as the components of the state vector X(t). Thus, in the phase plane the state
S; of the research object is described by the components {x(t;); x(t; +7)} of the time series {x(t; )}i“i1 .

The phase portrait allows to identify the system behavior features important from the stability point of view. To
search for an attractor in the case of two (three) factors a phase space is constructed and the position of phase points is
analyzed. If they are distributed uniformly, then the attractor existence hypothesis isn’t confirmed.

The phase portraits constructed for the time series shown in fig. 1 are represented in fig. 3. The value of the time
delay 7 is 1 year.

210

120 A

150 -

120

"". ekl

20

T T T

0" *eene" 30 a0 20 120 150 120 210

Fig. 3 — Phase portraits of the time series.

When fig. 3 is closely examined, it is seen that there are two areas of phase points thickening. They can be consid-
ered as the split attractor.

In other words, attractor bifurcation takes place. Usually it is connected with appearance in the system of such state
changes which can be interpreted as spasmodic or close to them. In the medical data analysis the attractor bifurcation en-
tails sudden crisis change of system condition with high probability.

Conclusion. The value of the highest characteristic Lyapunov’s indicator A(x,)=1,18 demonstrates randomness
in dynamics of the studied indicator.
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The computed value of the fractality index, which is the stability indicator for the initial time series, is
1 =0,66+0,073,i.e. #>0,5.This value is interpreted as flat, which indicates the condition of relative stability for the

studied process. In other words, extreme changes in the structure of morbidity of various skin pathologies in Ukraine
aren’t predicted in the nearest future.
The evaluation of the correlation ratio is C =—0,08. It implies almost complete absence of influence of the present

on the future in the studied time series, which also confirms the series trendlessness hypothesis.
The analysis of the phase portraits of time series, in particular detection of the attractor bifurcation, gives reason to
speak about a possible spike or spasmodic change of the morbidity indicator of some skin pathologies in Ukraine.
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