

УДК 666.974.2

А. Н. ЕФРЕМОВ

Донбасская национальная академия строительства и архитектуры

СРАВНИТЕЛЬНАЯ ТЕРМОСТОЙКОСТЬ АЛЮМОСИЛИКАТНЫХ БЕТОНОВ НА ОСНОВЕ РАЗЛИЧНЫХ ВЯЖУЩИХ

Получены щелочные алюмосиликатные бетоны с температурой деформации под нагрузкой 1 150—1 770 °C и огнеупорностью 1 680—2 000 °C. Бетоны характеризуются повышенной термостойкостью, особенно шамотный. Высокая термостойкость бетонов на основе щелочных вяжущих объясняется их повышенной прочностью, низкими упругими свойствами при температуре выше 600 °C и незначительной величиной коэффициента линейного температурного расширения.

огнеупорные алюмосиликатные бетоны, щелочные вяжущие, термомеханические свойства

ВВЕДЕНИЕ

Одной из основных технических характеристик огнеупорных материалов является термостойкость, которая определяет долговечность футеровок при чередующихся резких колебаниях температур. При прочих равных условиях термостойкость материалов находится в прямой зависимости от прочности и теплопроводности, а в обратной — от модуля упругости и коэффициента линейного температурного расширения материала [1, 2].

Среди огнеупорных материалов наибольшей термостойкостью характеризуются алюмосиликатные, от рядовых шамотных до высокоглиноземистых. Это связано, в основном, с их равномерным и сравнительно низким коэффициентом линейного температурного расширения и невысокими упругими свойствами при температуре выше 1 250—1 300 °C [1, 2]. Поэтому алюмосиликатные материалы являются лучшими заполнителями для термостойких бетонов.

Понятно, что на термостойкость бетонов существенное влияние должны оказывать и свойства вяжущей матрицы. В качестве вяжущего в огнеупорных шамотных бетонах могут использоваться: портландцемент, глиноземистый и высокоглиноземистый цементы, композиции на основе жидкого (обычно натриевого) стекла и алюмофосфатной связки.

Бетоны на основе портландского и глиноземистого цементов, шамотных наполнителей и заполнителей имеют невысокую, 1 200—1 300 °C, предельную температуру применения. Использование высокоглиноземистого цемента с рядовыми алюмосиликатными материалами типа шамота экономически нецелесообразно, т. к. уже при температуре 1 345 °C цемент с шамотом образуют эвтектический расплав, ограничивающий температуру применения бетона 1 350 °C [3, 4]. Кроме того, глиноземистый и высокоглиноземистый цементы на Украине не производятся.

Применение бетонов фосфатного твердения наиболее эффективно при горячих ремонтах тепловых агрегатов. Использование же фосфатных связующих на основе кислых и амфотерных оксидов в производстве огнеупорных бетонных изделий менее эффективно, т. к. требует обработки при температуре 200—500 °C [5].

В последние 30—40 лет нашли широкое использование огнеупорные бетоны на основе жидкостекольных вяжущих (натриевое жидкое стекло + тонкомолотый наполнитель + отвердитель). Эти бетоны обладают рядом достоинств: быстро твердеют, обладают достаточно высокой прочностью в области упругих деформаций при температуре 20—800 °C, характеризуются доступностью и сравнительной дешевизной исходных компонентов.

В качестве отвердителей жидкого стекла в огнеупорных бетонах применяют, в основном, кремнефторид натрия, дисперсные саморассыпающиеся металлургические шлаки. Однако вяжущие на жидком стекле и кремнефториде натрия не водостойки, кремнефторид токсичен и является сильным

плавнем по отношению к алюмосиликатным огнеупорным материалам. За счет оксида натрия жидкого стекла и кремнефторида предельная температура алюмосиликатных бетонов снижается на 100—400 °C [4, 5] по сравнению с используемыми алюмосиликатными заполнителями и наполнителем.

На основе жидкого стекла и отвердителей из металлургических шлаков можно получить водостой-кие, нетоксичные бетоны. Однако щелочноземельные оксиды шлаков тоже являются сильными плавнями по отношению к алюмосиликатам. Анализ диаграммы состояния $\mathrm{Na_2O-Al_2O_3-SiO_2}$ и $\mathrm{CaO-Al_2O_3-SiO_2}$ [4] показывает, что каждый процент щелочных и щелочноземельных оксидов снижает температуру плавления алюмосиликатов примерно на $20-30\,^{\circ}\mathrm{C}$. Для получения огнеупорных шамотных бетонов на жидком стекле в их состав необходимо вводить не более 4 % металлургических шлаков (около 2 % щелочноземельных оксидов). При использовании известных композиций, например с отвердителями из саморассыпающихся кристаллических шлаков, бетоны имеют низкую исходную прочность, особенно до сушки.

В Донбасской национальной академии строительства и архитектуры получены шлакощелочные (молотые шамот + доменный граншлак + жидкое стекло), позволяющие вводить в бетон не более $1-2\,\%$ щелочноземельных и $0,5-1,0\,\%$ щелочных оксидов. Кроме того, на основе тонкодисперсных алюмосиликатных материалов (шамот, муллитокорунд) разработаны щелочные вяжущие на основе жидкого стекла с силикатным модулем 1,0-1,5, отвердителем которого является метакаолин (каолин, обожженный при $650-750\,^{\circ}\mathrm{C}$). На их основе получены алюмосиликатные бетоны с температурой деформации под нагрузкой $1\,150-1\,770\,^{\circ}\mathrm{C}$ и огнеупорностью $1\,680-2\,000\,^{\circ}\mathrm{C}$. Специфическая аморфизированная структура продуктов твердения шлакощелочных (CaO·nSiO $_2$ ·mH $_2$ O, NaO·CaO·nSiO $_2$ ·mH $_2$ O) и щелочных (NaO·Al $_2\mathrm{O}_3$ ·2SiO $_2$ ·mH $_2$ O) вяжущих позволила предположить [6], что алюмосиликатные бетоны на их основе должны характеризоваться высокой термостойкостью.

Цель работы — провести сравнительные исследования термостойкости алюмосиликатных бетонов на различных вяжущих, определить основные факторы влияющие на их термостойкость.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

В исследованиях в качестве исходных компонентов применялись следующие тонкодисперсные материалы:

- метакаолин и шамот марки ШКН-2 (ТУУ 322-7-00190503-083-97, содержание ${\rm Al_2O_3-40,6~\%}$), полученные предварительным обжигом Новоселицкого каолина соответственно при температурах 700 и 1 450 °C;
- муллитокорундовый шамот марки МК-90 Часовоярского огнеупорного комбината из брикетов для производства изделий по ТУ 14-8-555-87 с содержанием $Al_{9}O_{3}$ 92,2 %;
- доменный граншлак Макеевского металлургического комбината с модулем основности 1,12, размолотый на Амвросиевском цементном заводе «Строма».

В сравнительных испытаниях применялись: портландцемент ПЦ I, глиноземистый и высокоглиноземистый цементы активностью 49,0; 41,5 и 52,0 МПа.

Тонкость помола материалов по остатку на сите 0.08 мм составляла 5.3-10.2 % для остальных материалов.

Регулирование силикатного модуля растворов силиката натрия производилось смешением промышленного жидкого стекла с силикатным модулем 2,9 и раствора гидроксида натрия. Плотность растворов $\text{NaO}\cdot 2\text{SiO}_2$ и $\text{NaO}\cdot 1,5$ SiO_2 составляла соответственно 1,25 и 1,30 г/см³. В исследованиях использовались бетоны, составы которых приведены в табл. 1.

Испытание модуля упругости бетонов в нагретом состоянии проводили при кратковременном воздействии нагрузки по методике [7, 8].

Определение термостойкости производилось следующим образом: после 28 суток нормального твердения образцы-кубы с ребром 7 см высушивались до постоянной массы при температуре 110 °C, после чего обжигались со скоростью нагрева 200 °C/час с выдержкой при конечной температуре 4 часа и выгружались в воду. Далее испытание проводилось по методике [9].

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Исследования влияния температуры прогрева на модуль упругости шлакощелочного бетона состава № 5 показали, что при нагреве до температуры 500 ° С его упругие свойства уменьшаются примерно так же, как и остальных бетонов (на рис. 1 для бетонов 1, 2 и 4 использованы обобщенные данные К. Д. Некрасова [7] и А. Ф. Милованова [8]). Снижение модуля упругости идет примерно прямо

	Расход материалов, кг/м ³													
	цементы			тонкодисперсные				шамот (мулл		растворы				
№ <u>№</u> пп	портландский	глиноземистый	высокоглино- земистый	шамот (мулли- токорунд*)	метакаолин	граншлак	$\mathrm{Na_2SiF}_6$	0,16–5 мм	5-20 мм	вода	Na ₂ O·2,9SiO ₂	Na ₂ O·2SiO ₂	Na ₂ O·1,5SiO ₂	
1	300	_	_	150	-	_	_	730	870	230			-	
2	_	400	_	50	1	_	_	730	870	230	-		_	
3	_	_	400	50	_	_	_	730	870	230			_	

940*

1040*

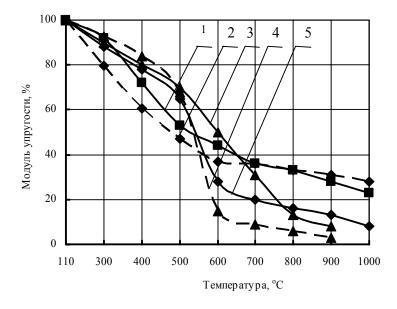

448*

Таблица 1 — Составы бетонов

пропорционально температуре и связано, вероятно, с удалением адсорбированной воды и разрыхлением вяжущей матрицы бетонов.

При дальнейшем повышении температуры прогрева до 1 000 °C снижение упругих свойств шамотных бетонов на портландском и глиноземистом цементах замедляется и при 900—1 000 °C их модуль упругости равен соответственно 23—28 и 28—31 % от исходной величины.

Иначе ведут себя бетон на жидком стекле с кремнефторидом натрия и шлакощелочной бетон. Для первого характерен значительный, но равномерный спад упругих свойств в температурном интервале 500—800 °C, для второго — резкое снижение упругости при подъеме температуры от 500 до 600 °C. Как показано в работе [6], резкий спад модуля упругости шлакощелочного бетона связан с резким увеличением подвижности катионов натрия и переходом аморфных продуктов твердения в пиропластическое состояние. При дальнейшем подъеме температуры до 900 °C снижение модуля упругости бетонов 3 и 4 замедляется, относительная величина этого снижения примерно такая же, как и для цементных бетонов. При 900 °C модуль упругости жидкостекольного и шлакощелочного бетонов составляет соответственно всего 8 и 3 % от исходного.

Рисунок 1 — Зависимость модуля упругости бетонов от температуры прогрева: 1-5 — соответственно составы №№ 1, 2, 4-6 по табл. 1.

Характер зависимости модуля упругости шамотного бетона № 6 с метакаолином в качестве отвердителя полуторомодульного жидкого стекла примерно такой же, как и для шлакощелочного состава № 5, но его остаточный модуль упругости при температурах 900 и 1 000 °C выше и равен 13 и 8 %.

Анализ результатов, приведенных в табл. 2, показывает, что шамотные бетоны на жидких стеклах отличаются высокой термостойкостью, особенно бетон на вяжущих, состоящих из тонкомолотых алюмосиликатов и полуторомодульного силиката натрия с отвердителем — дисперсныи метакаолином. Так, после 50 циклов водных теплосмен 800 °С → 20 °С бетон состава № 6 практически сохраняет свою исходную прочность.

$N_{\circ}N_{\circ}$	Предел прочности при сжатии (МПа – перед чертой, % – после черты) при количестве циклов										
составов по		водных теплосмен 800 °C ↔ 20 °C									
табл. 1	после сушки	1	5	15	30	40	50				
1	23,2/100	10,7/46	6,6/29	2,7/12	-	-	-				
2	26,6/100	16,8/63	12,0/45	6,6/25	2,2/10	-	-				
3	43,0/100	36,4/85	28,4/66	20,6/48	9,2/21	6,0/14	3,3/7,2				
4	20,5/100	16,4/80	13,2/64	10,7/52	8,7/42	5,4/26	4,6/22				
5	31,0/100	24,8/80	20,5/66	15,2/49	10,5/34	6,5/21	4,0/13				
6	26,4/100	26,9/102	-	-	26,7/101	26,3/100	25,9/98				
7	28,4/100	28,7/101	_	_	18,5/65	16,5/58	14,2/50				

Таблица 2 — Сравнительная термостойкость алюмосиликатных бетонов

Основным фактором, определяющим высокую термостойкость бетона, является низкий модуль упругости при температуре выше 600 °C. Кроме того, высокая термостойкость объясняется значительной остаточной прочностью бетона после прогрева при температуре 800 °C и низким коэффициентом температурного расширения связки и бетона в целом, а также их соизмеримостью [6].

Муллитокорундовые бетоны имеют более низкую термостойкость. Однако она несоизмеримо выше, чем, например, термостойкость шамотного бетона на всех использованных цементах.

выводы

Таким образом, основными факторами, определяющими высокую термостойкость разработанных огнеупорных бетонов, являются:

- значительное понижение модуля упругости при температурах выше 600 °C вследствие перехода керамической связки в состояние, близкое к пиропластическому, в результате чего релаксируются и снижаются температурные напряжения вяжущей матрицы;
 - высокая остаточная прочность после прогрева при температурах выше 800 °C;
- низкий коэффициент линейного температурного расширения, соизмеримый для вяжущей матрицы и заполнителей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Стрелов, К. К. Структура и свойства огнеупоров [Текст] / К. К. Стрелов. М. : Металлургия, 1972. 216 с.
- 2. Кингери, У. Д. Введение в керамику [Текст] : пер. с англ. / У. Д. Кингери. М. : Стройиздат, 1967. 499 с.
- 3. Стрелов, К. К. О подборе вяжущих для огнеупорных бетонов [Текст] / К. К. Стрелов, С. Р. Замятин // Огнеупоры. -1977. N 9. C. 25-28.
- 4. Диаграммы состояния силикатных систем [Text] : справочник / Н. А. Торопов, В. П. Барзаковский, В. В. Лапин и др. Л. : Наука, 1972. Вып. 3 : Тройные системы. 448 с.
- 5. СНиП 2.03.04-84. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур [Текст]. Взамен СН 482-76; введ. 1986-01-01. М.: ЦИТП Госстроя СССР, 1988. $54\ c$.
- 6. Ефремов, А. Н. Огнеупорные бетоны на основе щелочных вяжущих с повышенными термомеханическими свойствами [Текст] / А. Н. Ефремов, П. В. Кривенко. Макеевка : ДонНАСА, 2008. 187 с.
- 7. Некрасов, К. Д. Жароупорный бетон [Текст] / К. Д. Некрасов. М.: Промстройиздат, 1957. 283 с.
- 8. Милованов, А. Ф. Жаростойкий железобетон [Текст] / А. Ф. Милованов. М.: Госстройиздат, 1963. 235 с.
- 9. СН 156-79. Инструкция по технологии приготовления жаростойких бетонов [Текст]. М.: Стройиздат, 1979. 40 с.

Получено 06.09.2012

О. М. ЄФРЕМОВ

ПОРІВНЯЛЬНА ТЕРМОСТІЙКІСТЬ АЛЮМОСИЛІКАТНИХ БЕТОНІВ НА ОСНОВІ РІЗНИХ В'ЯЖУЧИХ

Донбаська національна академія будівництва і архітектури

Одержані лужні алюмосилікатні бетони з температурою деформації під навантаженням 1 150—1 770 °C і вогнетривкістю 1 680—2 000 °C. Бетони характеризуються підвищеною термостійкістю, особливо шамотний. Висока термостійкість бетонів на основі лужних в'яжучих пояснюється їх підвищеною міцністю, низькими пружними властивостями при температурі понад 600 °C і незначною величиною коефіцієнта лінійного розширення.

вогнетривкі алюмосилікатні бетони, лужні вяжучі, термомеханічні властивості

ALEXANDER YEFREMOV

COMPARATIVE THERMAL STABILITY OF ALUMINOSILICATE CONCRETES ON BASIS OF DIFFERENT BINDERS

Donbas National Academy of Civil Engineering and Architecture

Alkaline aluminosilicate concrete is obtained with the following properties: deformation temperature under loading 1 $150-1\,770\,^{\circ}$ C, refractoriness 1 $680-2\,000\,^{\circ}$ C and high thermal stability, especially fire-clay. Factors, which determinates heightened thermal stability of refractory concretes on basis of alkaline binders: heightened strength, small springiness at temperature above $600\,^{\circ}$ C and small quotient of linear heightened extension.

refractory aluminosilicate concretes, alkaline binders, thermal and mechanical properties

Єфремов Олександр Миколайович — доктор технічних наук, професор кафедри технологій будівельних конструкцій, виробів і матеріалів Донбаської національної академії будівництва і архітектури. Наукові інтереси: в'яжучі і бетони на основі промислових відходів, жаростійкі і вогнетривкі бетони.

Ефремов Александр Николаевич — доктор технических наук, профессор кафедры технологий строительных, изделий и материалов Донбасской национальной академии строительства и архитектуры. Научные интересы: вяжущие и бетоны на основе промышленных отходов, жаростойкие и огнеупорные бетоны.

Alexander Yefremov — DSc (Eng.), professor, Technology of Building Constructions, Products and Materials Department, Donbas National Academy of Civil Engineering and Architecture. Scientific interests: binders and concretes on the basis of industrial waste, heat-resistant and refractory concretes.