

УДК 666.974.2

А. Н. ЕФРЕМОВ

Донбасская национальная академия строительства и архитектуры

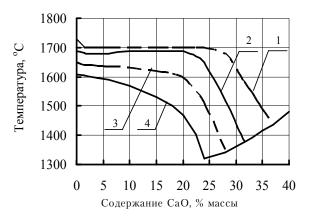
ЗАКОНОМЕРНОСТИ МИНЕРАЛООБРАЗОВАНИЯ ОГНЕУПОРНЫХ ШЛАКОЩЕЛОЧНЫХ ВЯЖУЩИХ СИСТЕМЫ Na_2O -CAO-SiO $_2$ ПРИ НАГРЕВЕ

Показано, что при температурах до 900 °C в огнеупорной системе CaO-SiO $_2$ в присутствии 2–4 Na $_2$ O и аморфного кремнезема образуется временная керамическая связка из β-CaO·SiO $_2$ или β-CaO·SiO $_2$ и тридимита. При температуре 1 200 °C β-CaO·SiO $_2$ переходит в расплав и роль кристаллической связки переходит к кристобалиту и тридимиту, формирование которых началось до плавления β-CaO·SiO $_2$ и заканчивается в температурном интервале 1 200–1 400 °C, выше которого керамическая связка представлена: в композициях с 10 % шлака кристобалитом и тридимитом, в составах с 5 % шлака — тридимитом. Установлено, что керамические кремнеземистые связки, содержащие 2–4 % Na $_2$ O и 2,5–5,0% CaO, имеют огнеупорность 1 580–1 665 °C и температуру начала деформации под нагрузкой в пределах 1 215–1 570 °C.

система Na_2O -CaO-SiO $_2$, огнеупорные вяжущие, влияние содержания Na_2O и CaO на минералообразование при 900-1 400 °C и огневые свойства

ВВЕДЕНИЕ

Ранее в работе [1] нами было исследовано огнеупорное вяжущее состава «доменный граншлак + кварцит + низкомодульное жидкое стекло», предназначенное для кремнеземистых бетонов – заменителей динасовых обжиговых изделий. Однако минимальный расход шлака в разработанных вяжущих и бетонах составлял соответственно 20 и примерно 5 %, что предопределило их невысокие показатели огневых свойств.


В системе и $\mathrm{Na_2O\text{-}CaO\text{-}SiO_2}$ определяющим огнеупорным оксидом является $\mathrm{SiO_2}$, плавнями — CaO и $\mathrm{Na_2O}$. Щелочной оксид является наиболее сильным плавнем по отношению к кремнезему. Температура плавления системы $\mathrm{Na_2O\text{-}SiO_2}$ уменьшается практически прямопропорционально увеличению содержания щелочного оксида. Так, если для чистого кремнезема температура ликвидуса равна 1 728 °C, то для эвтектики с максимальным содержанием $\mathrm{SiO_2} = 73.9~\%$ — всего 793 °C, т. е. снижение температуры плавления кремнезема составляет примерно 36 °C на каждый процент введенного $\mathrm{Na_2O}$ [2].

В системе CaO-SiO $_2$ первая высококремнеземистая эвтектика с температурой плавления 1 698 °C имеет состав 0,6 % CaO + 99,4 % SiO $_2$. При увеличении содержания CaO до 28 % температура плавления системы остается неизменной, а при дальнейшем вводе — снижается примерно равномерно до 1 436 °C. При этом образуется вторая высококремнеземистая эвтектика состава 37 % CaO+63 % SiO $_2$ [2].

Несмотря на то, что введение до 28 % CaO не изменяет температуру плавления системы CaO-SiO₂, тем не менее, при увеличении содержания CaO непрерывно возрастает количество и снижается вязкость расплава [2, 3], а это должно понизить температуру деформации материала под нагрузкой и, следовательно, снизить предельную температуру его применения при «двухстороннем» нагреве. Поэтому в технологии динасовых огнеупоров количество минерализующей добавки, гашеной извести, ограничивают 2,5 % в пересчете на CaO [4].

Совместное воздействие на кремнезем щелочного и щелочноземельного оксидов еще более неблагоприятно. Об этом свидетельствуют кривые зависимости температуры плавления кремнезема от

содержания CaO, построенные по изолиниям ликвидуса системы Na_2O -CaO-SiO $_2$ [2, 3] в сечениях с постоянным содержанием Na_2O (рис. 1).

Рисунок 1 — Расчетная зависимость температуры плавления системы Na_2O -CaO-SiO $_2$ от содержания Na_2O : 1-4 — соответственно 0, 2, 4 и 6 % массы.

Уменьшить введение Na_2O в кремнеземистые бетоны на основе шлакощелочного вяжущего за счет снижения расхода жидкого стекла не представляется возможным. Уменьшение же расхода граншлака до величин, не превышающих введение Na_2O , даст возможность максимально сблизить огневые свойства динасового заполнителя и бетона в целом.

В работе [5] показано, что при введении 5 % доменного граншлака от массы смешанного вяжущего «доменный граншлак+кварцит» предельная температура огнеупорного шлакощелочного кремнеземистого бетона и использованных динасовых заполнителей практически одинакова. Однако такой бетон имеет низкую исходную прочность.

Как известно, аморфный микрокремнезем является высокоэффективной пуццолановой добавкой к портландцементу [6], что объясняется, прежде всего, значительной растворимостью в водных растворах с высоким рН [7, 8]. Для теста шлакощелочного вяжущего рН = 13,0–14,5, для камня – 12,5–13,5 [9]. Это выше, чем для портландцемента, для которого эти величины составляют соответственно 12–13 и 12,55 [10, 11]. Поэтому аморфный микрокремнезем должен проявлять высокую активность в составе шлакощелочных вяжущих, что даст возможность повысить их исходную прочность при низком, 5–10 %, содержании доменного граншлака или примерно 2,5–5,0 % СаО. При этом сочетание в составе вяжущего высокодисперсного аморфного кремнезема и значительно более грубого тонкомолотого наполнителя из кристаллического кварцита создаст, возможно, неравновесные термодинамические условия для растворения наиболее дисперсного аморфного кремнезема в низкомодульном жидком стекле и последующей конденсации кремнекислоты на зернах-затравках тонкомолотого кварцита по механизму образования связки кремнебетона [12].

При использовании жидкого стекла с силикатным модулем 2,0–2,2 введение щелочного оксида в бетоны не будет превышать 1,5 %, в вяжущую керамическую матрицу – 3 %. Раннее минералообразование и огневые свойства таких композиций не изучались.

ЦЕЛЬ РАБОТЫ

Установить влияние содержания оксидов натрия и кальция на огневые свойства и закономерности образования кристаллических фаз, ответственных за прочность вяжущей матрицы кремнеземистого шлакощелочного бетона при высоких температурах.

МАТЕРИАЛЫ И МЕТОДИКИ ИССЛЕДОВАНИЙ

В исследованиях в качестве исходных компонентов применялись молотый кварцит Овручского рудоуправления марки ЗКТ-97 (ТУ 14-8-92-74); аморфный микрокремнезем сухого удаления Стахановского завода ферросплавов; доменный граншлак Макеевского металлургического комбината, размолотый на Амвросиевском цементном заводе «Строма». Тонкость помола и химический состав материалов, определенные по стандартным методикам, приведены в табл. 1.

Таблица 1 – Химический состав и тонкость помола материалов

Материал	Содержание оксидов, % массы							Остаток на сите	
Материал	SiO_2	Al_2O_3	Fe_2O_3	CaO	MgO	R_2O	MnO	SO_3	0,08 мм, %
Кварцит марки ЗКТ-97	97,47	1,16	0,66	0,37	0,16	0,12	-	_	10,2
Микрокремнезем	94,90	2,74	0,35	0,09	2,03	-	-		_
Доменный граншлак	37,85	8,15	0,36	47,72	3,80	_	0,70	1,30	5,3

Затворение смесей производилось растворами дисиликата натрия, полученного смешением соответствующих количеств жидкого стекла с силикатным модулем 2,9 и раствора гидроксида натрия. При этом концентрация растворов рассчитывалась, исходя из их плотности согласно данным, приведенным в литературе [13, 14].

Образцы-цилиндры диаметром 3,6 и высотой около 5 см прессовались из полусухих смесей при давлении 40 МПа, высушивались до постоянной массы при температуре 110 °C, после чего обжигались со скоростью нагрева $200~^{\circ}$ C/час.

Показатели огневых свойств бетонов зависят от завершенности высокотемпературных процессов перекристаллизации и рекристаллизации твердой фазы, достижения равновесия между твердой и жидкой фазами [3, 4, 15]. Поэтому, для исключения влияния указанных факторов, огневые свойства композиций изучались на образцах, предварительно обожженных в течение 12 часов при температуре 900–1 400 °C в печи с карбидокремниевыми электронагревателями. В остальном методика определения огнеупорности и температуры деформации под нагрузкой соответствовала требованиям стандартов.

Фазовый состав композиций исследовался рентгенофазовым методом на установке УРС-50 ИМ. Расшифровка рентгенограмм производилась сравнением полученных данных с характеристиками минералов, приведенными в литературе [16, 17].

Исследовались композиции, вещественный и расчетный химический составы которых приведены в табл. 2. Композиции 1–5 заведомо не являются вяжущими, поэтому минералообразование в них при обжиге не изучалось. Они были приняты лишь для сравнения при изучении влияния содержания оксидов Na₂O и CaO на огневые свойства композиций.

Таблица 2 – Составы кремнеземистых композиций

No	Расход компонентов, %					Расчетное содержание оксидов, %				
п/п	доменный граншлак	кварцит	микро- кремнезем	Na ₂ O·2SiO ₂	Na ₂ O	CaO	SiO_2	остальные		
1	0	94,46	-	5,54	2	0	95,61	2,39		
2	0	88,57	-	11,43	4	0	93,76	2,24		
3	5,0	95,00	_	_	0,11	2,74	94,49	2,66		
4	10,0	90,00	-	-	0,11	5,11	91,51	3,27		
5	10,0	84,46	ı	5,54	2	5,08	89,65	3,27		
6	5,0	89,46	ı	5,54	2	2,71	92,63	2,66		
7	2	3	4	5	6	7	8	9		
8	5,0	83,57	ı	11,43	4	2,70	90,78	2,86		
9	10,0	74,46	10,0	5,54	2,2	5,08	89,39	3,33		
10	5,0	79,46	10,0	5,54	2,1	2,70	92,37	2,83		
11	0	94,46	_	5,54	2	0	95,61	2,39		

АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ

Ранее в работе [1] нами было показано, что в вяжущих состава «доменный граншлак + кварцит = 10 + 90» на основе раствора дисиликата натрия основным продуктом твердения является низкоосновный гидросиликат кальция, который после обжига при $800\,^{\circ}$ С превращается в β -CaO·SiO $_{2}$. Настоящими исследованиями установлено, что после обжига при $900\,^{\circ}$ С β -CaO·SiO $_{2}$ остается единственной кристаллической фазой в аналогичной керамической связке, содержащей $10\,^{\circ}$ 8 шлака и $2\,^{\circ}$ 8 щелочного оксида. Об этом свидетельствует присутствие на рентгенограмме рефлексов с межплоскостными расстояними: 0.383; 0.340; 0.298 и 0.218.

Кварцитовый наполнитель остается, вероятно, инертным, т. к. α-кварц, как известно [3, 4], при температуре 870 °C перерождаться в тридимит только начинает. Уменьшение расхода шлака до 5 % практически не изменяет характер рентгенограммы композиции № 7. После обжига при 900 °C на ней лишь снижается незначительно интенсивность отражений β-волластонита. Увеличение содержания Na₂O с 2 до 4 % в композициях №№8 и 9 с 5−10 % шлака вызывает еще меньшие изменения на рентгенограммах.

При введении 10 % аморфного микрокремнезема на рентгенограмме композиции № 10 пики β -CaO·SiO $_2$ остаются неизменными, появляются интенсивные и четкие отражения β -тридимита с межплоскостными расстояниями: 0,454; 0,406; 0,369 нм и др. Практически такой же вид имеет рентгенограмма состава № 11, на ней лишь исчезают рефлексы β -CaO·SiO $_2$.

После обжига в течение 12 часов при 1 200 °C образцов кремнеземистых вяжущих с 5–10 % шлака и с добавкой микрокремнезема и без нее на рентгенограммах кристаллические кальциевые силикаты не обнаружены. Это свидетельствует о том, что все плавни, в том числе CaO, переходят в расплав.

На рентгенограммах композиций с аморфным микрокремнеземом и без него также не наблюдается отличий. С увеличением содержания щелочи до 4 % и при переходе от композиции № 8 с 10 % шлака к составу № 9 с 5 % шлака отражения остаточного кварца и кристобалита уменьшаются, а интенсивность рефлексов тридимита повышается. Отражения кварца во всех композициях исчезают. В составах с 2 % Na₂O и 5 % шлака, с 4 % Na₂O и 10 % шлака доминируют отражения тридимита, но присутствует также кристобалит. В композиции с 4 % Na₂O 5 % шлака рефлексы последнего практически не фиксируются. Наоборот, с увеличением расхода шлака до 10 % в композиции с 2 % щелочного оксида отражения тридимита практически исчезают, но остаются сильные пики кристобалита. Для кремнеземистых композиций, предварительно обожженных при 900, 1 200 и 1 400 °C, общая схема структурнофазовых изменений имеет вид, приведенный в табл. 3.

Температура обжига, °С	Содержание СаО, % массы	Фазовый состав связки	
900 (без микрокремнезема)	2,5	β-CaO·SiO ₂	
уоб (осз микрокремнезема)	5,0	p-CaO 51O ₂	
900 (с микрокремнеземом)	2,5	β-CaO·SiO ₂ , тридимит	
эоо (с микрокремнеземом)	5,0	р-сао 5102, гридимит	
1 200	2,5	Кристобалит, тридимит	
1 200	5,0	Кристобалит	
1 400	2,5	Тридимит	
1 400	5.0	Кристобалит, тридимит	

Таблица 3 – Структурнофазовые изменения кремнеземистых композиций при 900–1 400 °C

Как уже указывалось, при содержании CaO в пределах 0.6-28.0 % температура плавления чистой системы CaO-SiO $_2$ не изменяется. В реальных же смесях, без вводимого силиката натрия, содержащих 2.25-3.78 % примесей, каждый процент CaO, введенный в пределах от 0 до 5 %, вызывает равномерное снижение огнеупорности композиций (табл. 4). Это снижение значительно более низкое, чем от введения Na $_2$ O, и составляет примерно 4 °C на каждый процент CaO.

Таблица 4 — Зависимость огнеупорности и температуры начала деформации кремнеземистых композиций под нагрузкой (ТНДН) от содержания оксидов натрия и кальция

№		Содержание с	оксидов, % массі	Огнеупорность, °С	тндн, °С	
Π/Π	Na ₂ O	CaO	SiO ₂	примеси	Отнеупорность, С	пиди, с
1		0	97,47	2,53	1 730	1 650
2	0	0 2,5		3,16	1 720	1 630
3		5	91,22	3,78	1 710	1 610
4		0	95,61	2,39	1 680	1 570
5	2	2,5	92,48	3,02	1 665	1 545
6	6	5	89,36	3,64	1 650	1 500
7		0	93,75	2,25	1 630	1 450
8	4	2,5	90,62	2,58	1 605	1 355
9		5	87,50	3,50	1 580	1 220

Оксиды CaO и Na $_2$ O усиливают обоюдное флюсующее влияние на кремнеземистые композиции, что и следовало ожидать из анализа высококремнеземистой части диаграммы Na $_2$ O-CaO-SiO $_2$, приведенной на рис. 1. Совместное введение Na $_2$ O и CaO увеличивает количество расплава в большей степени, чем раздельное. Поэтому уже при использовании составов с 2 % Na $_2$ O каждый процент введенного CaO увеличивает падение огнеупорности кремнеземистых составов на 6 °C, а в композициях с 4 % Na $_2$ O это падение возрастает до 10 °C.

Повышенное содержание оксидов-плавней, особенно $\mathrm{Na_2O}$, в еще большей степени снижает температуру деформации камня композиций под стандартной нагрузкой 0,196 МПа. Основное влияние на ее снижение оказывает оксид натрия, особенно при его содержании свыше 2%. В композициях без щелочи каждый процент CaO, введенный до 5 %, вызывает равномерное снижение температуры начала деформации, равное 8 °C. Введение 2 и 4 % $\mathrm{Na_2O}$ увеличивает эту разницу соответственно до 10-14 и 38-46 °C. Для составов с 2,5 и 5,0 % CaO аналогичное снижение температуры начала деформации от содержания $\mathrm{Na_2O}$ значительно выше. Введение 2-4 % $\mathrm{Na_2O}$ понижает ее соответственно на 85-275 и 110-390 °C.

выводы

- 1. Снижение расхода шлака в камне шлакощелочных кремнеземистых вяжущих, содержащих 2-4~% Na $_2$ O, с 10 до 5 % вызывает после обжига при температуре 1 400 $^{\circ}$ C перерождение кварцита преимущественно в тридимит.
- 2. Керамические кремнеземистые связки, содержащие 2-4 % Na₂O и 2,5-5,0 % CaO, имеют огнеупорность $1\,580-1\,665\,^{\circ}$ C и температуру начала деформации под нагрузкой в пределах $1\,215-1\,570\,^{\circ}$ C.
- 3. С введением заполнителей, особенно мелкого, значительная часть щелочно-щелочноземельных плавней будет поглощаться заполнителями или химически взаимодействовать с ними. Это должно снизить относительное содержание плавней в связке и повысить огневые характеристики бетонов, максимально приблизив их к свойствам динасового кирпича.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефремов, А. Н. Шлакощелочные вяжущие и бетоны с повышенными жаростойкими свойствами [Текст]: дис. ... канд. техн. наук: 05.23.05 / А. Н. Ефремов. К., 1981. 210 с.
- 2. Диаграммы состояния силикатных систем [Текст]. Выпуск первый. Двойные системы / Н. А. Торопов, В. П. Бар-заковский, В. В. Лапин, Н. Н. Курцева. М.-Л. : Наука, 1965. 822 с.
- 3. Диаграммы состояния силикатных систем [Текст]. Вып. третий. Тройные силикатные системы / Н. А. Торопов, В. П. Барзаковский, В. В.Лапин и др. Л. : Наука, 1972. 448 с.
- 4. Стрелов, К. К. Теоретические основы технологии огнеупорных материалов [Текст] / К. К. Стрелов, И. Д. Кащеев. – М.: Металлургия, 1996. – 602 с.
- 5. Ефремов, А. Н. Сравнительная оценка свойств огнеупорных бетонов на жидком стекле с отвердителями из феррохромового и доменного гранулированного шлаков [Текст] / Ефремов А. Н., Деркач М. В., Чурсин С. И. // Вісник Донбаської державної академії будівництва і архітектури / М-во освіти і науки України, Донбаська держ. академія будівництва і архітетури. Макіївка, 2001. Вип. 2001-1(26) : Композиційні матеріали для будівництва. С. 91–95.
- 6. Каприелов, С. С. Влияние состава органо-минеральных модификаторов серии «МБ» на их эффективность [Текст] / С. С. Каприелов, А. В. Шейнфельд // Бетон и железобетон. 2001. № 5. С. 11–15.
- 7. Аваков, В. А. Сравнительная растворимость некоторых модификаций кремнезема [Текст] / В. А. Аваков // Строительные материалы. 1972. № 11. С. 35–36.
- 8. Волженский, А. В. Применение зол и топливных шлаков в производстве строительных материалов [Текст] / А. В. Волженский, И. А. Иванов, Б. Н. Виноградов. М.: Стройиздат, 1984. 256 с.
- 9. Глуховский, В. Д. Шлакощелочные цементы и бетоны [Текст] / В. Д. Глуховский, В. А. Пахомов. К.: Будівельник, 1978. 184 с.
- 10. Мчедлов-Петросян, О. П. Химия неорганических строительных материалов [Текст] / О. П. Мчедлов-Петросян. М.: Стройиздат, 1971. 224 с.
- 11. Баженов, Ю. М. Технология бетона [Текст] / Ю. М. Баженов. М. : Высш. шк., 1979. 456 с.
- 12. Кирилишин, В. П. Кремнебетон [Текст] / В. П. Кирилишин. К.: Будівельник, 1975. 110 с.
- 13. Григорьев, П. Н. Растворимое стекло [Текст] / П. Н. Григорьев, В. И. Матвеев. М. : Промстройиздат, 1956. 443 с
- 14. Гороновский, И. Т. Краткий справочник химика [Текст] / И. Т. Гороновский, Ю. П. Назаренко, Е. Ф. Некряч. К.: Наукова думка, 1974. 991 с.
- 15. Гегузин, Я. Е. Физика спекания [Текст] / Я. Е. Гегузин. М.: Наука, 1967. 360 с.
- 16. Минералогические таблицы [Текст] / Под ред. Е. И. Семенова. М.: Недра, 1981. 398 с.

17. Миркин, Л. И. Справочник по рентгеноструктурному анализу поликристаллов [Текст] / Л. И. Миркин. – М.: Гос. изд. физ.-мат. литературы, 1961. – 863 с.

Получено 25.12.2012

О. М. ЕФРЕМОВ

ЗАКОНОМІРНОСТІ МІНЕРАЛОУТВОРЕННЯ ВОГНЕТРИВКИХ ШЛАКОЛУЖНИХ В'ЯЖУЧИХ СИСТЕМИ ${\rm Na_2O-CaO-SiO_2}$ ПРИ НАГРІВАННІ Донбаська національна академія будівництва і архітектури

Показано, що при температурі до 900 °C у вогнетривкій системі CaO-SiO $_2$ в присутності 2–4 Na $_2$ O і аморфного кремнезему утворюється тимчасова керамічна зв'язка з β -CaO·SiO $_2$ або β -CaO·SiO $_2$ і тридиміту. При температурі 1 200 °C β -CaO·SiO $_2$ переходить у розплав і роль кристалічної зв'язки переходить до кристобаліту і тридиміту, формування яких почалось до плавлення β -CaO·SiO $_2$ і закінчується в температурному інтервалі 1 200–1 400 °C, вище від якого керамічна зв'язка представлена: в композиціях з 10 % шлаку кристобалітом і тридимітом, в складах з 5 % шлаку — тридимітом. Встановлено, що керамічні кремнеземисті зв'язки з вмістом 2–4 % Na $_2$ O и 2,5–5,0 % CaO, мають вогнетривкість 1 580–1 665 °C і температуру початку деформації під навантаженням у межах 1 215–1 570 °C.

система Na_2O -CaO-SiO2, вогнетривкі в'яжучі, вплив вмісту Na_2O і CaO на мінералоутворення при $900-1\,400\,^{\circ}\mathrm{C}$ і вогневі властивості

ALEXANDER YEFREMOV

LAWS OF MINERAL GENESIS OF REFRACTORY SLAG-ALKALINE BINDER OF SYSTEMS Na₂O-CaO-SiO₂ AT HEATING

Donbas National Academy of Civil Engineering and Architecture

It is rotined that at temperatures to 900 °C in the refractory system CaO-SiO $_2$ in presence 2–4 Na $_2$ O and amorphous silica a temporal ceramic binder appears from $\beta\text{-CaO}\cdot\text{SiO}_2$ or $\beta\text{-CaO}\cdot\text{SiO}_2$ and tridymite. At the temperature of 1 200 °C $\beta\text{-CaO}\cdot\text{SiO}_2$ passes to fusion and role of crystalline binder passes to the cristobalite and tridymite, forming of which began to melting of $\beta\text{-CaO}\cdot\text{SiO}_2$ and is closed in the temperature interval of 1 200–1 400 °C, higher than which a ceramic binder is represented: in compositions from a 10 % slag by a cristobalite and tridymite, in compositions from a 5 % slag – tridymite. It is set that ceramic silicas binders containing 2–4 % Na $_2$ O and 2,5–5,0 % CaO, have the refractoriness of 1 580–1 665 °C and temperature of began on-loading within of 1 215–1 570 °C.

system Na $_2$ O-CaO-SiO $_2$, refractory binders, influencing of maintenance Na $_2$ O and CaO on the mineral genesis at 900–1 400 °C and fires properties

Єфремов Олександр Миколайович — доктор технічних наук, професор кафедри технологій будівельних конструкцій, виробів і матеріалів Донбаської національної академії будівництва і архітектури. Наукові інтереси: в'яжучі і бетони на основі промислових відходів; жаростійкі і вогнетривкі бетони.

Ефремов Александр Николаевич – доктор технических наук, профессор кафедры технологий строительных конструкций, изделий и материалов Донбасской национальной академии строительства и архитектуры. Научные интересы: вяжущие и бетоны на основе промышленных отходов; жаростойкие и огнеупорные бетоны.

Alexander Yefremov – Doctor in Engineering Sciences, Professor, Technologies of Building Structures, Products and Materials Department, Donbas National Academy of Civil Engineering and Architecture. Scientific interests: binders and concretes on the basis of industrial waste; heat-resistant concretes.