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In this paper we study the Dirichlet optimal control problem associated with a
linear parabolic equation the coefficients of which we take as controls in L'(Q).
Since equations of this type can exhibit the Lavrentieff phenomenon and non-
uniqueness of weak solutions, we show that the optimal control problem in the
coefficients can be stated in different forms depending on the choice of the class
of admissible solutions. Using the direct method in the Calculus of variations, we
discuss the solvability of the above optimal control problems in the so-called class

of H-admissible solutions.
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1. Introduction

The aim of this work is to study the optimal control problems associated to
a linear parabolic equation with homogeneous Dirichlet boundary condition. The
control variable is the matrix of L'-coefficients in the main part of elliptic operator.
The precise answer existence or none-existence of an L'-optimal solutions heavily
depends on the class of admissible controls. The main questions are what is the
right setting of the optimal control problem with L!-controls in the coefficients,
and what is the right class of admissible solutions to the above problem? Using
the direct method in the Calculus of variations, we discuss the solvability of the
above optimal control problems in the class of H-admissible solutions.

Note that optimal control problems in coefficients for PDE are not new in the
literature. As Francois Murat showed in 1970 (see [14]), in general, such problems
have no solution even if the original elliptic equation is non-degenerate. It turns
out that this feature is typical for the majority of problems for optimal control
in coefficients. Note that this topic has been widely studied by many authors in
the case of non-degenerate weight function. In this paper we deal with an optimal
control problem in coefficients for the boundary value problem

y —divB(z)Vy+y=f in (0,T)xQ,
y=0 on (0,T) x 69, (1.1)
y(0,2) = yo(x) a.e.in Q,
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where f € L%((0,T) x Q) and yo € L?*(Q) are given functions, and B is a non
negative invertible matrix such that B + B~ € L!(Q;RY*¥). Several physical
phenomena are modeled by this parabolic problem. In order to be able to handle
media which possibly are "perfect” insulators somewhat or "perfect” conductors
(see [8]) we allow the matrix B to vanish somewhere in © or to be unbounded.

Even though numerous papers (see, for instance, [6, 16, 17, 21] and references
there) are devoted to variational and non variational approaches to problems
related to (1.1), only few papers deal with optimal control problems for degenerate
partial differential equations (see, for example, |1, 3, 5|). This can be explained by
several reasons. Firstly, boundary value problem (1.1) for every locally integrable
matrix B exhibit the Lavrentieff phenomenon, the non-uniqueness of weak solu-
tions, as well as other surprising consequences. So, in general, the mapping B —
y(B) can be multi-valued. Besides, the characteristic feature of this problem is
the fact that for different admissible controls B with properties prescribed above,
the corresponding weak solutions of (1.1) belong to the different weighted Sobolev
spaces. In addition, even if the original parabolic equation is non-degenerate, i.e.
admissible controls B are such that

B(x) > al, (B(z))™'>p7, ae inQ,
the majority of optimal control problems in coefficients have no solution.

Our paper is organized as follow: at the beginning we state problem of optimal
control in the coefficients and prescribe the class of admissible controls which
includes some div-like conditions in weighted spaces. After that we discuss the
classification of admissible solutions to the above optimal control problem. We
show that one of the characteristic features of this problem is the following fact: for
every admissible L'-control the corresponding H-solution to the boundary value
problem belongs to a weighted space which essentially depends on the original
control. So, the set of the so-called H-admissible solutions to the above problem
can be viewed as a collection of pairs "control-state"in the variable spaces each
of which is embedded into L'(Q; RN*N) x L2(0,T; W, (2)).

Further we deal with the existence of optimal solutions to the original problem.
We begin with a refinement of the celebrated div-curl lemma of F. Murat and
L.C. Tartar [15] to the case of variable weighted Sobolev spaces. After we study
the topological properties of the class of H-admissible solutions and show that
this set possesses some compactness properties with respect to the appropriate
convergence in variable spaces. In conclusion, using the direct method in the
Calculus of variations, we prove the existence of the H-optimal solutions to the
original problem.

2. Notation and Preliminaries

In this section we introduce some notation and preliminaries that will be useful
later on.

Let © be a bounded open subset of R (N > 1) with a Lipschitz boundary.
Let xg be the characteristic function of a subset £ C €, i.e. xg(x) =1if z € E,
and xg(xr) = 0if x ¢ E. The space Wol’l(ﬂ) is the closure of C§°(Q) in the
classical Sobolev space WH1(Q). For any subset E C Q we denote by |E| its
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N-dimensional Lebesgue measure £V (E). Let M2 () be the set of all matrices
A =a;;] in L®(;RY*N) such that

A(z) > al, (A(x) ' >p7, ae inQ (2.1)

for two fixed constants o and § with 0 < a < 8 < +oo. Here [ is the identity
matrix in RV*Y and inequalities (2.1) should be considered in the sense of the
quadratic forms defined by (A&, &)gn for € € RY. Note that (2.1) implies the
inequality |A(z)| < g a.e. in €.

Hereinafter by a weight we mean a locally integrable function p on RY such
that p(z) > 0 for a. e. x € RY. As a matter of fact every weight p gives rise to a
measure on the measurable subsets of RY through integration. This measure will
also be denoted by p. Thus p(E) = [, pdx for measurable sets E C RY. We will
use the standard notation L2(Q, pdx) for the set of measurable functions f on {2

such that
1/2
111l 22 p ) = ( /Q f2pda:> < oo

Definition 1. We say that a weight function p : RY — R, is degenerate on € if
pt 7€ Lip(RY), (2.2)
and the sum p + p~! does not belong to L*>(2).

With each of the degenerate weight functions p we will associate two weighted
Sobolev spaces W, = W(Q, pdx) and H, = H(Q, pdx), where W, is the set of
functions y € Wol’l(Q) for which the norm

Iyll, = </Q (> +pIVyl) dﬂf)l/Q (2.3)

is finite, and H, is the closure of C§°(£2) in Wy-norm. Note that due to the compact
embedding Wol’l(Q) < L'(Q) and estimates

1/2
| las < o ( / |y|2d:c> < VI Iyl (2.4)

1/2 1/2
Livstae< ([1vopoae) " ([orae) " <cil @)
Q Q Q

we come to the following result (we refer to [11, 21] for the details):
Theorem 1. Let p: RY — R be a degenerate weight on Q. Then

(i) the spaces H, and W, are complete with respect to the norm || - ||,;
(i) H, CW,, and W,, H, are Hilbert spaces;

(1it) H, C Wol’l(ﬂ), W, C Wol’l(Q), and the estimate

1/2
el < ( af + ( / p-lda:) ) ol

is valid for every element v € H, UW,;
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(iv) the embeddings H, — L'(2) and W, — L*(2) are compact.

If p is a non-degenerate weight function, that is, p is bounded between two
positive constants, then it is easy to verify that W, = H,. However, for a "typical"
degenerate weight p the space of smooth functions C§°(£2) is not dense in W,,.
Hence the identity W, = H, is not always valid (for the corresponding examples
we refer to [7, 19].

We recall that by Riesz Representation Theorem the dual space (H,)* of
weighted Sobolev space H, can be characterized as follows: if g € (H,)" then
there exist functions go € L*(Q) and g1 € L%(Q, pdz)" such that

(9 9) (m1,y 51, = /ngyder /Q (91 Vy)gn pdz Yy € H),. (2.6)

Furthermore,

1/2
HgH(Hp)* = inf { (/ lgo|? da +/ H?ﬂ\éwﬂd%) : ¢ satisfies (2.6)} .
Q Q

We denote by Hp_1 the dual space to H.

Remark 1. Note that under some additional suppositions Theorem 1 can be
specified as follows: assume that there exists v € (IN/2,+00) such that p™ €

LY(2). Then
2
iyl = ( / p\vm?dw)
Q

is a norm defined on H, and it’s equivalent to (2.3) and that, the embedding
H, — L*(Q) is compact |9, pp 46].

To conclude this section we recall some results concerning variational triplets.
Let V_ = H,,V = L?(Q) and let V* = Hp_l. Let X = L?(0,T;V_). Then the dual
space of X is X* = L2(0,T;V*). For any y € X, let 3/ denotes the generalized
derivative of y(t) = y(t,-), i.e.

T T
/ J (B)p(t) dt = - / Y9 () dt Vo € CF(0,T),
0 0

Then we have the following result (see [18]):

Lemma 1. Assume that there exists v € (N/2,+00) such that p=* € L'().
Then V_ C V. C V* is an evolution triple, i.e. the embeddings V_ — V —
Vi are continuous, and the embedding V_ — V s compact. Moreover, W =
{ye X, vy € X*} equipped with the norm

Il = llglle + 1l = Nyllzo.rsmy) + 19| z2go oy

15 a Banach space such that
1. the embedding W — C(0,T; L%(Q)) is continuous;

2. the embedding W — L?(0,T; L*(Q)) is compact.
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3. Setting of the Optimal Control Problem
Let p be given element of L'(2) satisfying the conditions
0<p(z)ae in Q p¥ e LY Q) for some v e (N/2,+00). (3.1)

Then, in view of the estimate

. 1/v 1/v* Uy L
Lotas([ovac) ([ ar) " =1 or.
Q Q Q

where v* = v/(1 — v) is the conjugate of v, we have: p~t € L'(Q), ie., pis a
degenerate weight in the sense of Definition 1. In order to introduce the class of
admissible L'-controls, we adopt the following concept:

Definition 2. For a given ¢ € [LZ(Q,pdx)]N we say that an element g €
L?(Q, pdx) is the divergence of the vector field ¥ with respect to the weight p
(in symbols g(x) = div,v(x)) if ¥ and g are related by the formula

/ 9(@)p(a) pla) do = - / (5(2), V(@) p(z)de Vo€ CR(Q).  (3.2)
Q Q

Definition 3. We say that a matrix B € L'(Q; RV*") is an admissible control
(it is written as B € Byg) to the parabolic problem

y —divB(z)Vy+y=f in (0,T) xQ, (3.3)
y(0,z) =yo a.e.in £,
y=0 on (0,7)x 00

if there is a symmetric matrix A = [@y,...,ay] € L®(Q;RY*YN) such that
B(z) = A(x)p(z), A€ MJ(Q), (3.6)
|div,d;| <7 p—a.ein Q Vi=1,...,N, (3.7)

where f € L2(Q), yo € L?>(Q), v = (71,...,7n) € RV is a given positive vector,
elements div,a; € L*(Q, pdz) are defined by (3.2). Here p is the fixed element of
LY(Q) with properties (3.1).

Remark 2. As follows from Definition 3 and properties (3.1), for every admissible
control B € L'(Q;RV*N) we deal with the initial-boundary value problem for
the degenerate parabolic equation

y' —div (pA(z)Vy) +y=f in (0,T) xQ, (3.8)
y(0,2) =yo ae.in Q, y=0 on (0,7) x 0N. (3.9)
It means that for some admissible matrices of coefficients B € B,4 the boundary

value problem (3.3)—(3.5) can exhibit the Lavrentieff phenomenon [19] as well as
other surprising consequences.
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The optimal control problem we consider in this paper is to minimize the
discrepancy between a given distribution vy € L2((0,7) x ) and the solution of
the parabolic problem (3.3)—(3.5) by choosing an appropriate matrix of coefficients
B € B,g. More precisely, we are concerned with the following optimal control
problem

T
Minimize {I(B,y) = C/ / ly(t, z) — yq(t, z)|* dedt
0o Ja

T
+/ /|Vy(:n)|[%wpd:ndt+ ||A||Loo(Q7RN><N)} subject constraints (3.6)—(3.7).
0 Ja
(3.10)

Here ¢ > 0 is a penalization parameter.
Let B = Ap € B,g be an admissible control. Then the quadratic form

B(y) = /Q A(x)Vy - Vypde

with domain W, C L?(€) is closed and corresponds to a non-negative self-adjoint
operator Ay = —divp AV in L?(Q2). At the same time this form will also be
closed in H, C L?(€2), which leads us to another non-negative self-adjoint operator
Ay = —divp AV in L?(Q). Thus, there exist at least two different problems

Y+ Awy+y=f and ¥y +Apy+y=71, (3.11)

relating to initial-boundary value problem (3.3)-(3.5). As we will see later, each
of the problem (3.11) is uniquely solvable. So, the mapping B — y(B, f), where
y(B, f) is a solution to problem (3.3)-(3.5), is multivalued, in general.

4. Classification of optimal solutions

In view of the observation given above, we adopt the classification of the
solutions to the initial-boundary valued problem (3.3)-(3.5) following Pastukhova
& Zhikov [21] (for more details and other types of solutions we refer to |2, 11, 20]).

Definition 4. We say that a function y = y(B, f) = y(A, p, f) € L*(0,T;W,) is a
weak solution to the initial-boundary value problem (3.3)—(3.5) for a fixed control
B = Ap € B,y and a given function f € L*((0,T) x Q), if for each ¢ € C§°(Q2), y
satisfies the integral identity

[ to
/ngp dx . + /t1 /Q <<A(x) Vy,ch) . p(x) + ycp) dxdt

1)
:/ /fgodxdt Vi, ta €0, 7], (4.1)
t1 Q

and

lim ygodx:/yogodx Vo e C5o (). (4.2)
t—+0 Jq Q
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As immediately follows from Definition 4 that a weak solution y(¢, ) is weakly
continuous as a function [0,7] — W, and y|,_, = yo. This follows from the
boundedness of y(t,-) : [0,7] — W, and the continuity of the functions

/y(t,az)gp(aﬁ)dm on [0,7].
Q

Definition 5. Let V), be some intermediate space with H, C V, C W,. We say
that a function y = y(4,p, f) € L*0,T;V,) is a V,-solution or a variational
solution to the initial-boundary value problem (3.3)-(3.5) if y satisfies condition
(4.2) and the integral identity (4.1) for every test function ¢ € V,,.

Remark 3. Note that for every fixed B = Ap € B, the existence and uniqueness
of a V),-solution can be established using the standard technique [13]. Moreover, if
V, = H,, them, in view of Lemma 1, we have: H ,-solution to (3.3)—(3.5) possesses
the additional properties

yeWw={yeL*0,T;H,), y € L*(0,T;H, ")},

and hence y € C(0,T;L?(f2)). At the same time, the variational solutions do
not exhaust the entire set of the weak solutions to the above boundary value
problem. Indeed, by analogy with [21] it can be proved that a weak solution
y = y(B,f) € L*(0,T;W,) is a variational one if and only if, in addition to
(4.1)—(4.2), the energy equality

1/2d t2+/t2/((A()V V) +2)ddt /t2/fddt(43)
S | yrdx z) Vy,Vy y*) dedt = ydxdt (4.
2 Ja n Ju Ja w P tn Jo

holds true for all t1,ty € [0,T]. Therefore, if y1(B, f),y2(B, f) € W, are variatio-
nal solutions with y1(B, f) # ya2(B, f) (hence they belong to the different inter-
mediate spaces Vi , and Vs ,), then y = (y1(B, f) + y2(B, f)) /2 is a weak solution
to (3.3)-(3.5) but not variational one. Moreover, as follows from Definition 4
the set of weak solutions to the initial-boundary value problem (3.3)—(3.5) for a
fixed control B = Ap € B, is convex and closed. Hence if y; (B, f),y2(B, f) are
variational solutions such that yi(B, f) # y2(B, f) then the corresponding set of
the weak solutions is infinite.

It is obvious that for every fixed B € Buq, f € L*((0,T) x Q), and V,(H, C
V, € W,) a variational solution is also a weak solution to the problem (3.3)—(3.5).
However, the inverse assertion is not true in general. For a "typical" degenerate
weight function p the space of smooth functions C§°(f2) is not dense in W), and
hence there is no uniqueness of the weak solutions (see, for instance, [12, 20]).

Now it is clear that the mapping B +— y(B, f) can be viewed as multi-valued
in general, and this depends on the choice of the corresponding solutions space
V,. As a result, the variational formulation of the optimal control problem (3.6)-
(3.7),(3.10) can be stated in different forms. Taking this fact into account, we
indicate the following sets

En={(B,y) | B=Ap € By, y € H,,(B,y) are related by (4.1)-(4.3) },
4.4)

[1]

(4.
w ={(B,y) | B=Ap € Baq, y € W,,(B,y) are related by (4.1)-(4.3) }
(4.5)
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As was mentioned above (see Remark 3), the sets =y and Zy are always non-
empty. Hence the corresponding minimization problems

inf  I(B, d inf  I(B, 4.6
(o, 1B0) and (e 1(B)) (45)

are regular. However, because of the Lavrentieff effect, it may happen that for some
fixed control B = Ap € By and a given f € L?((0,T) x ) the corresponding
H ,-solution yx (A, p, ) and W -solution yw (A, p, f) to the initial-boundary value
problem (3.8)—(3.9) are not the same. This implies that the variational problems
(4.6) are essentially different, in general. Hence, the minimizers to (4.6) can be
also different, and moreover

inf I(B, inf  I(B,y).

Note that due to the Remark 3 and estimates (2.4)—(2.5), we have the obvious
inclusions

Eg C LYQ;RNNY % L2(0,T; H(Y, pdzx)) N C(0,T; L*(Q2)),
Ew € LY RY*NY 5 L2(0, T; W(Q, pdz)).

In this paper we restrict of our analysis to the set =y and adopt the following
concept:

Definition 6. We say that a pair
(B%,y%) € LN RYY) x L2(0, T Hp) N C(0,T; L*(92))
is an H-optimal solution to the problem (3.3)-(3.7),(3.10) if

(B°y°) €2y and I(B%y°) = inf I(B,y).
(By)eEnm

The main question for the optimal control problem (3.3)-(3.7),(3.10) to be
answered in this paper is about its solvability in the class of H-solutions. It should
be noted that to the best knowledge of the authors, the existence of optimal pairs
to the above problem in the sense of Definition 6 has not been studied in the
literature.

5. On Compensated Compactness in Weighted Sobolev Spaces

We begin this section with some auxiliary results that will be useful later. Let
{(Bk,yx) = (Arp, i) € En}yen be any sequence of H-admissible solutions. With
this sequence we associate the space

X, = {fe L2(0,T; LX(Q, pdaz))N | div, f € L*(0,T; L2(Q,pdx))}

and endow it with the norm

-, R R 1/2
HfHXp = (”fH%2(O,T;L2(Q7pd:c))N + [|div, f ”%Z(O,T;H(Q,pdw))) ’
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We say that a sequence {ﬁ € X’D}k N is bounded if
€

sup ”JF”X,J < 4o00.

k—o0

Further, for every £ > 0 we define a cut-off operator Ty : R — R as follows
Ti(s) = max{min{s, k}, —k}. By analogy with the well-known results for the
classical Sobolev spaces (see [10]), it is easy to verify the following assertion:

Proposition 1. Let y be an element of the weighted space
W= {yeL*0,T;H,), y € L*(0,T;H, ")} .
Then
(i) Tk(y) € W for every k > 0;
(i) VaTk(y) = X{jy|<k}Vzy almost everywhere in 2;

(iii) Tk(y) — y almost everywhere in (0,7) x  and strongly in L*(0,7; H,) as
k — oo.

Taking these properties and Proposition 2.3 from [11] into account, by the
diagonal trick, we come to the conclusion:

Proposition 2. Let p be an element of L'(2) with properties (3.1). Let
{gr € W},en be a bounded sequence such that

g =g  in L*((0,7);9),
Vg. — Vg in L*(0,T;L*(Q,pdx))N, as k— oo. (5.1)
g, —4¢ i L*(0,T;H,")

Then there exists an increasing sequence of positive numbers {/;},  such that
b — 400 as k — oo, and

Ty (gx) — g strongly in L*(0,T;L*(Q)) as k — oo. (5.2)

Now we are in the position to give the main result of this section (for compa-
rison we refer to the Compensated Compactness Lemma in [4, 15]).

Theorem 2. Let {f;; € L*(0,T; LQ(Q,pdx))N}k W f e L20,T; L2(Q, pdz))N
€
{9k € Whicn, and g € W be such that
(i) fo— f in L2(0,T; L3(Q, pdz))N as k — oo;

(ii) g — g in L*((0,T) x Q), Vg — Vg in L*(0,T;L*(, pdz))V, and
g, —4g n LQ(O,T;H[)_l) as k — oo.

Then

kh_}ngo/ / fk,ng p¢dmdt / / f, Vg p?/) dzdt, (5.3)
cheCO (Q), Vo € C5°(0,T).
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Proof. We divide our proof into several steps. Our first step is to prove that
div, f, = div, f in L*(0,T;L*(Q, pdz)) as k — oo. (5.4)

Indeed, since the sequence {divpﬁ € L*(0,T; L2(Q,pd:n))}k N is bounded, by
€

the compactness criterium in reflexive spaces, we can suppose that there exists

an element ¢ € L?(0,T; L*(, pdz)) such that

div, fp = ¢ in L%(0,T;L*(Q,pdzx)) as k — oo.

Then passing to the limit in the relation

/OT/Q (£ V) oo dadt = _/OT/Q(p (divy fi) pdudt— (5.5)

Vo e C§e2), Vi € C§°(0,T) as k — oo, we obtain

/oT /Q (f’ V‘p) o P ddt = / / @ dp dadt

Ve CR(Q), Ve C(0,T).

Therefore (see Definition 2), the element ¢ is the anisotropic divergence of the
vector field f € L?(0,T; L?(2, pdx))N with respect to the weight p, i.e., ¢ =
div, f € L?(0,T; L*(, pdz)). So, (5.4) is valid.

The next step is to study the asymptotic behavior as k — +oo of the following

numerical sequence
T —
¢ (fiVar) pwdxdt} .
{/0 /Q RN keN

To begin with, we note that as follows from Lemma 1, the element g € W is
the strong limit of {gx € W}, oy in L*((0,7T") x Q)-topology. So, we can suppose
that

gr — ¢ a.e.in (0,7) x Q. (5.6)

<ﬁ;’v¢> N Pdr| < </ HﬁcHszdx>1/2 (/quﬁp”?gzvpdx)lm,
'/ dlv”f’f)pd‘f < llellz= o ||p||1/2 </ <divpﬁc)2ﬂd:ﬂ>l/2
Q

and by density of C§°(£2) in H,, the relation (5.5) can be extended to the functions
@ of H,NL>(2). Since Ty(gx) € L>=(0,T; H,NL>(2)) for every k € Nand £ € N,
it follows that

In view of estimates

/oT/Q (ﬁ’v(n(g’“)(’”))m pu dwdt = _/OT/Q (din ﬁ) o Ty (gr) pt dadt
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for all ¢ € C§°(R2) and ¢ € C3°(0,T). Due to this relation, we make use the
following equality

/OT/Q(p <ﬁc,VTz(9k)>RN pwdxdt:/oT/Q (ﬂjv(Tg(gk)go))RN o dadt
_ /OT/QTz(gk) (ﬂ,W)RN o dedt = _/OT/Q <divp ﬂ) o To(g) b dadt

T —
—/0 /QTz(gk) (fk,Vsﬁ)RNm/)dl‘dt
= I~ 13, VeeCQ), Ve CF0.T). (5.7)

Our next intention is to study the asymptotic behavior of the integrals If ’
and Igz as k — oo. Since the sequence {divpf;; € L2(Q,pdm)}k N is bounded,
' €
the property (5.4) implies that

pdiv, f, = pdiv, f in LY((0,T) x Q). (5.8)

Hence the family {pdivpf;;}k N is equi-integrable on (0,7) x Q. Therefore, be-
€

cause of the boundedness of {Ty(gx) — T¢(g)} the sequence

{,o (Ty(gr) — Te(9)) divpf;;}kEN is equi-integrable on (0,7 x Q
as well. Using the property (5.6), we have

Ty(gr) — Te(g) a.e.in (0,7) x Q for every ¢ € N.

Then Lebesgue’s Theorem implies

p (To(gr) — To(9))div, fr — 0 in LY((0,T) x Q) as k — oc.
Moreover, by (5.8), we get

Tg(g),odivp!)‘jf€ - Tg(g)pdivpf in LY(0,7) x Q) as k— oo.
Combining these results, we obtain

pTo(gr) divy fir = p (To(gr) — Tilg)) div, fi
+ pTy(g) div, fr — pTe(g)div, f in LY((0,T) x Q). (5.9)

On the other hand, the inequality

| 7e(n) div, i

L2(07T§L2(Q7pda})) S ”Té(gk)”Loo((QT)XQ)

v, 4 <o

L2(0,T;L2(Qpda)) —

)

immediately yields that {Tg(gk)divpf;;}k u is bounded in L2(0,T; L?(%, pdz))
€

for every ¢ € N. Hence, there exists an element n° € L2(0,T; L?(S, pdzx)) such
that -
To(gx) div, fr — n* in L*(0,T; L*(Q, pdz)),
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that is, Tg(gk)pdivpﬁ — ' pin L1((0,7) x Q). Then, in view of (5.9), we get
nt = Ty(g) div, f p-almost everywhere in .

As a result, we come to the relation
T
lim If, = / / Ti(g) pdiv, f pp dadt. (5.10)
k—oo 7’ 0 Q
Using similar arguments, we can prove that

hm I“—/ /Tg f V(p pwdxdt.

Thus, the passage to the limit in (5.7) leads us to the relation

lim / ' / o (7 VTilor)) o dodi

k—o0

/ /Tg cpdlvpfpwda:dt / /Tg f ch pwdajdt

:/0 /Q f,vm@)@) zpdxdt—/ /Tg fw _ptdudt

T
— [ [ ¢ (79t0)),, oo dudt Voo CR@), Yo € CFO.T) (311)
0 Ja R

which holds true for every ¢ € N.
Let {1}, (9x) € Hp}pen be a sequence with properties (i)-(iii) which is ensured
by Proposition 1. Then for any é > 0 there exists a value k* € N such that
T 1/2
</ T, (gr) — ngi dt) <6 Vk>£k* (by Proposition 1).
0

By Cauchy-Bunyakovskii inequality we have the estimate

L =sup / / Fi VT, (gr) — gk) p?/)dl‘dt‘
keN
< 5|’¢”C(§)”¢HC(O,T)ka”Lz(O,T;LQ(Q,pdx))N < C6. (5.12)

Taking into account that X4, |<¢,) — X strongly in L*°((0,T) x Q), it finally
follows that

T
kli_{go/ / k,ng m/)da?dt—/ /90 f,Vg)RNm/)dwdt‘

5
v khm / / fo, VT, gk)> o dadt
—/ /cp f,vg> pzpdajdt'—i-Cé
by (5.11
< hm/ /X{|gk<ek}90 <f Vg) py dxdt

k—o0

(by Proposition 1)

—/ /so f,vg pwdxdt‘—FCé os.
0o JQ RN
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Since § > 0 is arbitrary, this concludes the proof. O

Remark 4. The key point of the proof of this lemma is the fact that the space of
smooth functions C§°(€2) is dense in the weighted space H, = H ({2, pdx). So, in
general, Lemma 2 does not hold for the case when {g} <y is a bounded sequence
in the weighted Sobolev space W,,.

6. Existence Theorem for H-optimal solutions

Our prime interest in this section deals with the solvability of optimal control
problem (3.3)—(3.7),(3.10) in the class of H-solutions. To begin with, we consider
the topological properties of the set of H-admissible solutions =y to the problem
(3.3)—(3.7),(3.10). To do so, we introduce the following concepts:

Definition 7. We say that a sequence {(By,yr) = (Axpr, Yr) € En}jpey is boun-
ded if

up {44l e ) + Ikl o
+ 1yl 20,7y x0) + ”vykHL2(O,T;L2(Q,pdm))N] < +o00.
Definition 8. We say that a bounded sequence of H-admissible solutions
{(Br,yx) = (Akpr, Yr) € Ex tpen

T-converges to a pair (B,y) € L (Q; RV*N) x W if

(a) B = Ap, where A € L>®(; RN*N);
(b) Ay = Ain L®(Q;RV*N);
(c
(d

yr — yin L2((0,T) x Q);
Vyr — Vy in L2(0,T; L*(Q, pdz))V;

y, =y in L*(0,T; H, ).

)
)
)
(e)

Theorem 3. For every f € CO(RYN) the set Eg is closed with respect to the
T-convergence.

Proof. Let {(Bk,yr) }ren C 2 be a bounded 7-convergent sequence of H-admis-
sible pairs to the optimal control problem (3.6)-(3.7),(3.10). Let

(Bo, yo) = (Aop,yo)

be its 7-limit. Our aim is to prove that (By,yo) € Zg.
In view of the initial assumptions (3.6)—(3.7) we have:

Ap = [@1k, .- dn k) € ME(Q)
and |div,d;k| < v pdr-ae.in Q Vi=1,...,N, VkeN.
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Hence, the sequences {divp a;p € L2(Q,pdaz)}keN Vi =1,...,N are uniformly
bounded. The compactness criterium in L?((2, p dz)-spaces implies the existence

of elements {¢; € LZ(Q,pdx)}i]il such that
div, @iy — ¢; in L*(Q,pdr)as k—oo Vi=1,...,N.

Then passing to the limit as k — oo in the relations

/(d’ik,ch)Rdia::—/cpdivpd’ikpda:
Q Q
Ve (), Vie{l,...,N}, VkeN,
—%/s@pdw S/cpdivpd}kpdxéw/sopdx
Q Q Q
Vie{l,...,N}, VkEeN, Vp >0,
Aj = [@vg, .. dng) € ME(Q),

we come to the conclusion:

div, @y — ¢; = div,d;o in L*(Qpdr) as k — oo, (6.1)
|div, dio| < p—ae in QVie{l,...,N},
Ap = Ay = [@r0,-..,@n0) € ME(Q). (6.3)

Hence the limit matrix By = Agp is an admissible control to the problem (3.6)—
(3.7),(3.10).

It remains to show that the pair (By,yo) is related by the energy equality
(4.3). We will do it in several steps. Step 1. To begin with, we note that, by the
initial assumptions there exists of a constant C' > 0 such that

Hyk”LQ((O,T)XQ) S Ca ”vyk”L2(07T;L2(Q,pd:v))N S 07
Hy;ﬂ”LQ(O,T;H,jl) <C VkeN

Using the standard arguments, we can suppose that there exists an element y, €
W such that, up to a subsequence we have (see also Lemma 1)

yr — 9« weakly in the Sobolev space L2(0,T; H,), (6.4)
i =y, in L*0,T;H, "),
and y, — vy, in L2((0,7) x Q). (6.6)

Further, we note that the sequence
{AVyr}en s bounded in L2(0,T; L*(, pdx))™.

Hence passing to a subsequence if necessary, we may assume that there exists a
function 77 € L?(0,T; L?(Q, pdz))" such that

ApVye = i =7 in L*(0,T; L*(Q, pdx))V. (6.7)
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Taking these facts into account, we can pass to the limit in the integral identity

_/OT/ka90¢/dxdt+/oT/Q<<Ak Vyk,Vgo)RNp-|- yk@)¢d$dt
- /OT/Qdexdt Vo e CEQLY Y € CRO.T) (6.9)

as k — oco. As a result, we get

T T
—/0 /Qy*cpw dxdt+/0 /Q((n, Vo)pn p+ yup) o dodt
T
:/ /fgwd:rdt Vo € C° (), ¥ € C°(0,T)  (6.9)
0 Q

or —div (po77) = f — y« — ¥, in the sense of distributions.
Step 2. Here we show that 7 = Ag Vy,. To do so, we introduce the following
scalar function

v(z) = (2, z)pn, (6.10)

where 7 is a fixed element of RY. By the initial assumptions, we have

T
/ /@(A,‘c (Vyk—Vv),Vyk—Vv> pibdadt >0, ¥ > 0,79 > 0,
0o Jo RN

or, in view of (6.10), this inequality can be rewritten as

T
/0 /Qgp(Ak (Vyk—z),Vyk—z)RN py dxdt > 0. (6.11)

Our next intention is to pass to the limit in (6.11) as k — oo using Theorem 2.
Having put in the statement of this lemma: fr = A,V (yr — v), and g = yp — v
for all k € N, we see that the sequence {g = yr — v}, satisfies all assumptions
of Theorem 2. In view of (6.7) and (6.3), we have

fro = ApV (g —v) = Ap (Vyp — 2) = 71— AoZ in L?(0,T; L*(, pdz))™.
(6.12)
It remains to show that the sequence {ﬁ = AV (yp — ’U)}k . is bounded in X,,.
€

Indeed, from integral identity (6.8), we get
T
—/ /divp (Ak Vyk) wp dzdt
0 Q

T T
:/ /cp(f—yk)wdxdt—l—/ /ykcpzp/dxdt VkeN.
0 Q 0 Q

Since (f —wyr—yp) = (f —w« —¥l) = p (f =y« — ¥l p in L*((0,T) x Q), it
follows that the sequence

{div, (AxVyr)}cy i weakly compact in L*(0,T; L*(Q, pdx)),
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and
divy, (AxVye) = p" (g +yi — f) in L*(0,T; L*(Q, pdu)). (6.13)

To apply Theorem 2 we have to show that the sequence {div, ( Ar 7 )}keN is
also weakly convergent in L?(0,T; L*(2, pdz)), where the elements div, (A Z)
are defined as

/Q(Ak Z,V@)Rdia::—/Qgpdivp (Ax Z) pdz Vo € C°(Q), Vk € N.

Indeed, for every test function ¢ € C§°(§2), we have

(a:lk(x)v'g)RN
/(Akz V@)Rdi:r—/ Ve pdx
Q Q (@n (@), Z)rn RN
N

— [ 3 @l e pdw—/zza” s da =

Q i=1 Q = 1 j5=1

N N

:sz /(a]k(:z:),Vgp)Rdix— Zz]/gpdlvpa]kpdx—,]k (6.14)
=l g j=1

Then using (6.1), we get
N
hm Ji = sz hm /gpdlvpa]kpdx— sz/gpdivp(ijopd:r. (6.15)
=

Applying the converse transformations with (6.15) as we did it in (6.14), we arrive
at

lim pdiv, (Ak Z) pdr = — lim (Ak Z,ch)Rdix
k—oo J k—o0
Q

— _/ (A0 2, V@) gy pda = / pdiv, (Ao Z) pdz V¢ € CF(Q). (6.16)
Q
Q

Thus, from (6.13) and (6.16) it finally follows that
div, (A (Vyr — 2)) = p~ Hys +ys — f) — div, (4o 7)
in L*(0,T;L*(Q, pdzx)). (6.17)
As a result, combining properties (6.7), (6.17), (6.12) and the fact that
V(yr —v) = V(ye —v) in L*(0,T; L*(Q, pdx))Y

we see that all suppositions of Theorem 2 are fulfilled. So, passing to the limit in
inequality (6.11) as k — oo, we get

// (77— Aoz, Vyu — Z)gn poddt >0, VZeRY
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for all positive ¢ € C§°(2) and ¢ € C§°(0,T"). After localization, we have
po (71— Ao Z,Vye — Z)pn >0, VZe RN,

Hence
7= AoVy. p-almost everywhere in (0,7) x €. (6.18)

Step 3. Taking (6.18) into account, we can represent the integral identity (6.9)
in the form

T T
—/0 /Qy*sm/)/dﬂfdt-i-/o /Q((Ao Vs, VO)gr £+ Ys ) ¥ dadt

T
:/ /fgwd:rdt Vo € Co(Q), ¥ € C5°(0,T), (6.19)
0 Q

or y, —div (p AoVy. ) + y« = [ in the sense of distributions. Since C§°(2) dense
in H,, this relation remains true for all ¢ € H,. Hence, taking ¢ = y, as a test
function in (6.19), we arrive to the energy equality

1
§/yfda: / / Ao Vy*,Vy*)RNp—F yo dxdt / /fy*da:dt.
Q

In order to conclude the proof it remans to pass to the limit in the equality

dz = li d
/Q yowdr = lim /Q ykp dz

which holds true for all k£ € N. As a result, using (6.4), we obtain

lim «odr = dx.
Py Qy (%2 /Qyoﬁﬂ

Thus the 7-limit pair (By, y«) belongs to set Zp, and this concludes the proof. [

Now we are in a position to state the existence of H-optimal pairs to the
problem (3.6)-(3.7),(3.10).

Theorem 4. Let p be a degenerate weight in the sense of Definition 1 satisfying
the conditions (3.1). Let also f € L*((0,T) x Q) and yq € L*(Q) be given
functions. Then the optimal control problem (3.6)—(3.7), (3.10) admits at least
one H-solution

(BPt 4Pty € 2 < LY (Q;RVYY x W,

Proof. First of all we note that for the given function f € L?(Q) and every
admissible control B = Ap € B4, there exists an H-solution y = y(B, f) € H,
such that energy equality (4.3) holds true. Let {(Bk,yr) = (Akp, Yx) € EH Fren
be an H-minimizing sequence to the problem (3.6)-(3.7),(3.10). Then as follows
from the inequality

T
inf_ I(B,y) = lim [c | e = e dna

(Byy)eEEnm

T
+/ /Q\Vyk(t,x)]]?wpda:dt—i- ”Ak”Loo(Q’RNxN) < +00, (620)
0
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there is a constant C' > 0 such that
sup [|ykllz2) < €, sup [[Vykl 2 pany < C.
keN keN

Hence, in view of the definition of the class of admissible controls B,g, we may

assume that, within a subsequence, there exist a distribution y* € ¥ and a matrix
A* € L®(Q; RV*N) such that

Ap 2 A% in L®(Q,RNN), g — ¢* in L*(0,T; H,),

(6.21)
y, — () in L*(0,T;H, ).

Using the arguments of the proof of Theorem 3, it can be shown that the matrix

B* = A*p € LY(Q, RN*") is admissible control to the problem (3.6)—(3.7),(3.10).

As a result, the pair (B*,y*) is the 7-limit of the H-minimizing sequence

{(Br,yk) € En}pen -

Then, by Theorem 3, this pair is an H-admissible to the problem (3.6)-(3.7),
(3.10). Since the cost functional I is lower 7-semicontinuous, we get

I(B*,y") < liminf I(By,yx) = inf I(B,y).
k—oo (B,y)€EEH

Hence (B*,y*) is an H-optimal pair, and this concludes the proof. O
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