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hlet optimal 
ontrol problem asso
iated with alinear paraboli
 equation the 
oe�
ients of whi
h we take as 
ontrols in L1(Ω).Sin
e equations of this type 
an exhibit the Lavrentie� phenomenon and non-uniqueness of weak solutions, we show that the optimal 
ontrol problem in the
oe�
ients 
an be stated in di�erent forms depending on the 
hoi
e of the 
lassof admissible solutions. Using the dire
t method in the Cal
ulus of variations, wedis
uss the solvability of the above optimal 
ontrol problems in the so-
alled 
lassof H-admissible solutions.Key words. Degenerate paraboli
 equations, 
ontrol in 
oe�
ients, weighted Sobolev spa
es,Lavrentie� phenomenon, dire
t method in the Cal
ulus of variations.1. Introdu
tionThe aim of this work is to study the optimal 
ontrol problems asso
iated toa linear paraboli
 equation with homogeneous Diri
hlet boundary 
ondition. The
ontrol variable is the matrix of L1-
oe�
ients in the main part of ellipti
 operator.The pre
ise answer existen
e or none-existen
e of an L1-optimal solutions heavilydepends on the 
lass of admissible 
ontrols. The main questions are what is theright setting of the optimal 
ontrol problem with L1-
ontrols in the 
oe�
ients,and what is the right 
lass of admissible solutions to the above problem? Usingthe dire
t method in the Cal
ulus of variations, we dis
uss the solvability of theabove optimal 
ontrol problems in the 
lass of H-admissible solutions.Note that optimal 
ontrol problems in 
oe�
ients for PDE are not new in theliterature. As Fran�
ois Murat showed in 1970 (see [14℄), in general, su
h problemshave no solution even if the original ellipti
 equation is non-degenerate. It turnsout that this feature is typi
al for the majority of problems for optimal 
ontrolin 
oe�
ients. Note that this topi
 has been widely studied by many authors inthe 
ase of non-degenerate weight fun
tion. In this paper we deal with an optimal
ontrol problem in 
oe�
ients for the boundary value problem





y′ − divB(x)∇y + y = f in (0, T ) × Ω,
y = 0 on (0, T ) × ∂Ω,
y(0, x) = y0(x) a. e. in Ω,

(1.1)
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46 I. G. BALANENKO, P. I. KOGUTwhere f ∈ L2((0, T ) × Ω) and y0 ∈ L2(Ω) are given fun
tions, and B is a nonnegative invertible matrix su
h that B + B−1 ∈ L1(Ω; RN×N ). Several physi
alphenomena are modeled by this paraboli
 problem. In order to be able to handlemedia whi
h possibly are �perfe
t� insulators somewhat or �perfe
t� 
ondu
tors(see [8℄) we allow the matrix B to vanish somewhere in Ω or to be unbounded.Even though numerous papers (see, for instan
e, [6, 16, 17, 21℄ and referen
esthere) are devoted to variational and non variational approa
hes to problemsrelated to (1.1), only few papers deal with optimal 
ontrol problems for degeneratepartial di�erential equations (see, for example, [1, 3, 5℄). This 
an be explained byseveral reasons. Firstly, boundary value problem (1.1) for every lo
ally integrablematrix B exhibit the Lavrentie� phenomenon, the non-uniqueness of weak solu-tions, as well as other surprising 
onsequen
es. So, in general, the mapping B 7→
y(B) 
an be multi-valued. Besides, the 
hara
teristi
 feature of this problem isthe fa
t that for di�erent admissible 
ontrols B with properties pres
ribed above,the 
orresponding weak solutions of (1.1) belong to the di�erent weighted Sobolevspa
es. In addition, even if the original paraboli
 equation is non-degenerate, i.e.admissible 
ontrols B are su
h that

B(x) ≥ αI, (B(x))−1 ≥ β−1I, a.e. in Ω,the majority of optimal 
ontrol problems in 
oe�
ients have no solution.Our paper is organized as follow: at the beginning we state problem of optimal
ontrol in the 
oe�
ients and pres
ribe the 
lass of admissible 
ontrols whi
hin
ludes some div-like 
onditions in weighted spa
es. After that we dis
uss the
lassi�
ation of admissible solutions to the above optimal 
ontrol problem. Weshow that one of the 
hara
teristi
 features of this problem is the following fa
t: forevery admissible L1-
ontrol the 
orresponding H-solution to the boundary valueproblem belongs to a weighted spa
e whi
h essentially depends on the original
ontrol. So, the set of the so-
alled H-admissible solutions to the above problem
an be viewed as a 
olle
tion of pairs "
ontrol-state"in the variable spa
es ea
hof whi
h is embedded into L1(Ω; RN×N ) × L2(0, T ;W 1,1
0 (Ω)).Further we deal with the existen
e of optimal solutions to the original problem.We begin with a re�nement of the 
elebrated div-curl lemma of F. Murat andL.C. Tartar [15℄ to the 
ase of variable weighted Sobolev spa
es. After we studythe topologi
al properties of the 
lass of H-admissible solutions and show thatthis set possesses some 
ompa
tness properties with respe
t to the appropriate
onvergen
e in variable spa
es. In 
on
lusion, using the dire
t method in theCal
ulus of variations, we prove the existen
e of the H-optimal solutions to theoriginal problem.2. Notation and PreliminariesIn this se
tion we introdu
e some notation and preliminaries that will be usefullater on.Let Ω be a bounded open subset of R

N (N ≥ 1) with a Lips
hitz boundary.Let χE be the 
hara
teristi
 fun
tion of a subset E ⊆ Ω, i.e. χE(x) = 1 if x ∈ E,and χE(x) = 0 if x 6∈ E. The spa
e W 1,1
0 (Ω) is the 
losure of C∞

0 (Ω) in the
lassi
al Sobolev spa
e W 1,1(Ω). For any subset E ⊂ Ω we denote by |E| its
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N -dimensional Lebesgue measure LN (E). Let Mβ

α (Ω) be the set of all matri
es
A = [ai j ] in L∞(Ω; RN×N ) su
h that

A(x) ≥ αI, (A(x))−1 ≥ β−1I, a.e. in Ω (2.1)for two �xed 
onstants α and β with 0 < α ≤ β < +∞. Here I is the identitymatrix in R
N×N , and inequalities (2.1) should be 
onsidered in the sense of thequadrati
 forms de�ned by (Aξ, ξ)

RN for ξ ∈ R
N . Note that (2.1) implies theinequality |A(x)| ≤ β a.e. in Ω.Hereinafter by a weight we mean a lo
ally integrable fun
tion ρ on R

N su
hthat ρ(x) > 0 for a. e. x ∈ R
N . As a matter of fa
t every weight ρ gives rise to ameasure on the measurable subsets of R

N through integration. This measure willalso be denoted by ρ. Thus ρ(E) =
∫
E ρ dx for measurable sets E ⊂ R

N . We willuse the standard notation L2(Ω, ρ dx) for the set of measurable fun
tions f on Ωsu
h that
‖f‖L2(Ω,ρ dx) =

(∫

Ω
f2ρ dx

)1/2

< +∞.De�nition 1. We say that a weight fun
tion ρ : R
N → R+ is degenerate on Ω if

ρ+ ρ−1 ∈ L1
loc(R

N ), (2.2)and the sum ρ+ ρ−1 does not belong to L∞(Ω).With ea
h of the degenerate weight fun
tions ρ we will asso
iate two weightedSobolev spa
es Wρ = W (Ω, ρ dx) and Hρ = H(Ω, ρ dx), where Wρ is the set offun
tions y ∈W 1,1
0 (Ω) for whi
h the norm

‖y‖ρ =

(∫

Ω

(
y2 + ρ |∇y|2

)
dx

)1/2 (2.3)is �nite, andHρ is the 
losure of C∞
0 (Ω) inWρ-norm. Note that due to the 
ompa
tembedding W 1,1

0 (Ω) →֒ L1(Ω) and estimates
∫

Ω
|y| dx ≤ |Ω|1/2

(∫

Ω
|y|2 dx

)1/2

≤
√

|Ω| ‖y‖ρ, (2.4)
∫

Ω
|∇y| dx ≤

(∫

Ω
|∇y|2ρ dx

)1/2 (∫

Ω
ρ−1 dx

)1/2

≤ C‖y‖ρ, (2.5)we 
ome to the following result (we refer to [11, 21℄ for the details):Theorem 1. Let ρ : R
N → R+ be a degenerate weight on Ω. Then(i) the spa
es Hρ and Wρ are 
omplete with respe
t to the norm ‖ · ‖ρ;(ii) Hρ ⊆Wρ, and Wρ, Hρ are Hilbert spa
es;(iii) Hρ ⊂W 1,1

0 (Ω), Wρ ⊂W 1,1
0 (Ω), and the estimate

‖v‖W 1,1
0 (Ω) ≤

(
√

|Ω| +
(∫

Ω
ρ−1 dx

)1/2
)
‖v‖ρis valid for every element v ∈ Hρ ∪Wρ;



48 I. G. BALANENKO, P. I. KOGUT(iv) the embeddings Hρ →֒ L1(Ω) and Wρ →֒ L1(Ω) are 
ompa
t.If ρ is a non-degenerate weight fun
tion, that is, ρ is bounded between twopositive 
onstants, then it is easy to verify thatWρ = Hρ. However, for a "typi
al"degenerate weight ρ the spa
e of smooth fun
tions C∞
0 (Ω) is not dense in Wρ.Hen
e the identity Wρ = Hρ is not always valid (for the 
orresponding exampleswe refer to [7, 19℄.We re
all that by Riesz Representation Theorem the dual spa
e (Hρ)

∗ ofweighted Sobolev spa
e Hρ 
an be 
hara
terized as follows: if g ∈ (Hρ)
∗ thenthere exist fun
tions g0 ∈ L2(Ω) and −→g 1 ∈ L2(Ω, ρ dx)N su
h that

〈g, y〉(Hρ)∗;Hρ
=

∫

Ω
g0y dx+

∫

Ω
(−→g 1,∇y)RN ρ dx ∀ y ∈ Hρ. (2.6)Furthermore,

‖g‖(Hρ)∗ = inf

{(∫

Ω
|g0|2 dx+

∫

Ω
‖−→g 1‖2

RNρ dx

)1/2

: g satis�es (2.6)} .We denote by H−1
ρ the dual spa
e to Hρ.Remark 1. Note that under some additional suppositions Theorem 1 
an bespe
i�ed as follows: assume that there exists ν ∈ (N/2,+∞) su
h that ρ−ν ∈

L1(Ω). Then
‖|y|‖ =

(∫

Ω
ρ |∇y|2 dx

)2is a norm de�ned on Hρ and it's equivalent to (2.3) and that, the embedding
Hρ →֒ L2(Ω) is 
ompa
t [9, pp 46℄.To 
on
lude this se
tion we re
all some results 
on
erning variational triplets.Let V− = Hρ, V = L2(Ω) and let V ∗

− = H−1
ρ . Let X = L2(0, T ;V−). Then the dualspa
e of X is X ∗ = L2(0, T ;V ∗

−). For any y ∈ X , let y′ denotes the generalizedderivative of y(t) = y(t, ·), i.e.
∫ T

0
y′(t)ϕ(t) dt = −

∫ T

0
y(t)ϕ′(t) dt ∀ϕ ∈ C∞

0 (0, T ).Then we have the following result (see [18℄):Lemma 1. Assume that there exists ν ∈ (N/2,+∞) su
h that ρ−ν ∈ L1(Ω).Then V− ⊆ V ⊆ V ∗
− is an evolution triple, i.e. the embeddings V− →֒ V →֒

V+ are 
ontinuous, and the embedding V− →֒ V is 
ompa
t. Moreover, W =
{y ∈ X , y′ ∈ X ∗} equipped with the norm

‖y‖W = ‖y‖X + ‖y′‖X ∗ := ‖y‖L2(0,T ;Hρ) + ‖y′‖L2(0,T ;H−1
ρ )is a Bana
h spa
e su
h that1. the embedding W →֒ C(0, T ;L2(Ω)) is 
ontinuous;2. the embedding W →֒ L2(0, T ;L2(Ω)) is 
ompa
t.



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 493. Setting of the Optimal Control ProblemLet ρ be given element of L1(Ω) satisfying the 
onditions
0 < ρ(x) a.e. in Ω, ρ−ν ∈ L1(Ω) for some ν ∈ (N/2,+∞). (3.1)Then, in view of the estimate
∫

Ω
ρ−1 dx ≤

(∫

Ω
ρ−ν dx

)1/ν (∫

Ω
dx

)1/ν∗

= ‖ρ−ν‖1/ν
L1(Ω)

|Ω|1/ν∗

,where ν∗ = ν/(1 − ν) is the 
onjugate of ν, we have: ρ−1 ∈ L1(Ω), i.e., ρ is adegenerate weight in the sense of De�nition 1. In order to introdu
e the 
lass ofadmissible L1-
ontrols, we adopt the following 
on
ept:De�nition 2. For a given ~v ∈
[
L2(Ω, ρ dx)

]N we say that an element g ∈
L2(Ω, ρ dx) is the divergen
e of the ve
tor �eld ~v with respe
t to the weight ρ(in symbols g(x) = divρ~v(x)) if ~v and g are related by the formula

∫

Ω
g(x)ϕ(x) ρ(x) dx = −

∫

Ω
(~v(x),∇ϕ(x))

RN ρ(x) dx ∀ϕ ∈ C∞
0 (Ω). (3.2)De�nition 3. We say that a matrix B ∈ L1(Ω; RN×N ) is an admissible 
ontrol(it is written as B ∈ Bad) to the paraboli
 problem

y′ − divB(x)∇y + y = f in (0, T ) × Ω, (3.3)
y(0, x) = y0 a.e. in Ω, (3.4)
y = 0 on (0, T ) × ∂Ω (3.5)if there is a symmetri
 matrix A = [~a1, . . . ,~aN ] ∈ L∞(Ω; RN×N ) su
h that

B(x) = A(x)ρ(x), A ∈Mβ
α (Ω), (3.6)

|divρ ~ai| ≤ γi ρ− a. e. in Ω, ∀ i = 1, . . . , N, (3.7)where f ∈ L2(Ω), y0 ∈ L2(Ω), γ = (γ1, . . . , γN ) ∈ R
N is a given positive ve
tor,elements divρ ~ai ∈ L2(Ω, ρ dx) are de�ned by (3.2). Here ρ is the �xed element of

L1(Ω) with properties (3.1).Remark 2. As follows from De�nition 3 and properties (3.1), for every admissible
ontrol B ∈ L1(Ω; RN×N ) we deal with the initial-boundary value problem forthe degenerate paraboli
 equation
y′ − div (ρA(x)∇y) + y = f in (0, T ) × Ω, (3.8)

y(0, x) = y0 a.e. in Ω, y = 0 on (0, T ) × ∂Ω. (3.9)It means that for some admissible matri
es of 
oe�
ients B ∈ Bad the boundaryvalue problem (3.3)�(3.5) 
an exhibit the Lavrentie� phenomenon [19℄ as well asother surprising 
onsequen
es.



50 I. G. BALANENKO, P. I. KOGUTThe optimal 
ontrol problem we 
onsider in this paper is to minimize thedis
repan
y between a given distribution yd ∈ L2((0, T ) × Ω) and the solution ofthe paraboli
 problem (3.3)�(3.5) by 
hoosing an appropriate matrix of 
oe�
ients
B ∈ Bad. More pre
isely, we are 
on
erned with the following optimal 
ontrolproblem Minimize {

I(B, y) = ζ

∫ T

0

∫

Ω
|y(t, x) − yd(t, x)|2 dxdt

+

∫ T

0

∫

Ω
|∇y(x)|2

RN ρ dxdt + ‖A‖L∞(Ω,RN×N )

} subje
t 
onstraints (3.6)�(3.7).(3.10)Here ζ > 0 is a penalization parameter.Let B = Aρ ∈ Bad be an admissible 
ontrol. Then the quadrati
 form
Φ(y) =

∫

Ω
A(x)∇y · ∇y ρ dxwith domain Wρ ⊂ L2(Ω) is 
losed and 
orresponds to a non-negative self-adjointoperator AW = −div ρA∇ in L2(Ω). At the same time this form will also be
losed inHρ ⊂ L2(Ω), whi
h leads us to another non-negative self-adjoint operator

AH = −div ρA∇ in L2(Ω). Thus, there exist at least two di�erent problems
y′ + AW y + y = f and y′ + AHy + y = f, (3.11)relating to initial-boundary value problem (3.3)�(3.5). As we will see later, ea
hof the problem (3.11) is uniquely solvable. So, the mapping B 7→ y(B, f), where

y(B, f) is a solution to problem (3.3)�(3.5), is multivalued, in general.4. Classi�
ation of optimal solutionsIn view of the observation given above, we adopt the 
lassi�
ation of thesolutions to the initial-boundary valued problem (3.3)�(3.5) following Pastukhova& Zhikov [21℄ (for more details and other types of solutions we refer to [2, 11, 20℄).De�nition 4. We say that a fun
tion y = y(B, f) = y(A, ρ, f) ∈ L2(0, T ;Wρ) is aweak solution to the initial-boundary value problem (3.3)�(3.5) for a �xed 
ontrol
B = Aρ ∈ Bad and a given fun
tion f ∈ L2((0, T ) ×Ω), if for ea
h ϕ ∈ C∞

0 (Ω), ysatis�es the integral identity
∫

Ω
yϕdx

∣∣∣∣
t2

t1

+

∫ t2

t1

∫

Ω

((
A(x) ∇y,∇ϕ

)
RN

ρ(x) + yϕ
)
dxdt

=

∫ t2

t1

∫

Ω
fϕdxdt ∀ t1, t2 ∈ [0, T ], (4.1)and

lim
t→+0

∫

Ω
yϕdx =

∫

Ω
y0ϕdx ∀ϕ ∈ C∞

0 (Ω). (4.2)



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 51As immediately follows from De�nition 4 that a weak solution y(t, ·) is weakly
ontinuous as a fun
tion [0, T ] → Wρ and y|t=0 = y0. This follows from theboundedness of y(t, ·) : [0, T ] →Wρ and the 
ontinuity of the fun
tions
∫

Ω
y(t, x)ϕ(x) dx on [0, T ].De�nition 5. Let Vρ be some intermediate spa
e with Hρ ⊆ Vρ ⊆ Wρ. We saythat a fun
tion y = y(A, ρ, f) ∈ L2(0, T ;Vρ) is a Vρ-solution or a variationalsolution to the initial-boundary value problem (3.3)�(3.5) if y satis�es 
ondition(4.2) and the integral identity (4.1) for every test fun
tion ϕ ∈ Vρ.Remark 3. Note that for every �xed B = Aρ ∈ Bad the existen
e and uniquenessof a Vρ-solution 
an be established using the standard te
hnique [13℄. Moreover, if

Vρ = Hρ, them, in view of Lemma 1, we have: Hρ-solution to (3.3)�(3.5) possessesthe additional properties
y ∈ W =

{
y ∈ L2(0, T ;Hρ), y

′ ∈ L2(0, T ;H−1
ρ )
}
,and hen
e y ∈ C(0, T ;L2(Ω)). At the same time, the variational solutions donot exhaust the entire set of the weak solutions to the above boundary valueproblem. Indeed, by analogy with [21℄ it 
an be proved that a weak solution

y = y(B, f) ∈ L2(0, T ;Wρ) is a variational one if and only if, in addition to(4.1)�(4.2), the energy equality
1

2

∫

Ω
y2 dx

∣∣∣∣
t2

t1

+

∫ t2

t1

∫

Ω

((
A(x) ∇y,∇y

)
RN

ρ+ y2
)
dxdt =

∫ t2

t1

∫

Ω
fy dxdt (4.3)holds true for all t1, t2 ∈ [0, T ]. Therefore, if y1(B, f), y2(B, f) ∈Wρ are variatio-nal solutions with y1(B, f) 6= y2(B, f) (hen
e they belong to the di�erent inter-mediate spa
es V1,ρ and V2,ρ), then y = (y1(B, f) + y2(B, f)) /2 is a weak solutionto (3.3)�(3.5) but not variational one. Moreover, as follows from De�nition 4the set of weak solutions to the initial-boundary value problem (3.3)�(3.5) for a�xed 
ontrol B = Aρ ∈ Bad is 
onvex and 
losed. Hen
e if y1(B, f), y2(B, f) arevariational solutions su
h that y1(B, f) 6= y2(B, f) then the 
orresponding set ofthe weak solutions is in�nite.It is obvious that for every �xed B ∈ Bad, f ∈ L2((0, T ) × Ω), and Vρ(Hρ ⊆

Vρ ⊆Wρ) a variational solution is also a weak solution to the problem (3.3)�(3.5).However, the inverse assertion is not true in general. For a "typi
al" degenerateweight fun
tion ρ the spa
e of smooth fun
tions C∞
0 (Ω) is not dense in Wρ, andhen
e there is no uniqueness of the weak solutions (see, for instan
e, [12, 20℄).Now it is 
lear that the mapping B 7→ y(B, f) 
an be viewed as multi-valuedin general, and this depends on the 
hoi
e of the 
orresponding solutions spa
e

Vρ. As a result, the variational formulation of the optimal 
ontrol problem (3.6)�(3.7),(3.10) 
an be stated in di�erent forms. Taking this fa
t into a

ount, weindi
ate the following sets
ΞH = {(B, y) | B = Aρ ∈ Bad, y ∈ Hρ, (B, y) are related by (4.1)�(4.3)} ,(4.4)
ΞW = {(B, y) | B = Aρ ∈ Bad, y ∈Wρ, (B, y) are related by (4.1)�(4.3)} .(4.5)



52 I. G. BALANENKO, P. I. KOGUTAs was mentioned above (see Remark 3), the sets ΞH and ΞW are always non-empty. Hen
e the 
orresponding minimization problems
〈

inf
(B,y)∈ΞH

I(B, y)

〉 and 〈
inf

(B,y)∈ΞW

I(B, y)

〉 (4.6)are regular. However, be
ause of the Lavrentie� e�e
t, it may happen that for some�xed 
ontrol B = Aρ ∈ Bad and a given f ∈ L2((0, T ) × Ω) the 
orresponding
Hρ-solution yH(A, ρ, f) andWρ-solution yW (A, ρ, f) to the initial-boundary valueproblem (3.8)�(3.9) are not the same. This implies that the variational problems(4.6) are essentially di�erent, in general. Hen
e, the minimizers to (4.6) 
an bealso di�erent, and moreover

inf
(B,y)∈ΞH

I(B, y) 6= inf
(B,y)∈ΞW

I(B, y).Note that due to the Remark 3 and estimates (2.4)�(2.5), we have the obviousin
lusions
ΞH ⊂ L1(Ω; RN×N ) × L2(0, T ;H(Ω, ρ dx)) ∩ C(0, T ;L2(Ω)),

ΞW ⊂ L1(Ω; RN×N ) × L2(0, T ;W (Ω, ρ dx)).In this paper we restri
t of our analysis to the set ΞH and adopt the following
on
ept:De�nition 6. We say that a pair
(B0, y0) ∈ L1(Ω; RN×N ) × L2(0, T ;Hρ) ∩ C(0, T ;L2(Ω))is an H-optimal solution to the problem (3.3)�(3.7),(3.10) if

(B0, y0) ∈ ΞH and I(B0, y0) = inf
(B,y)∈ΞH

I(B, y).The main question for the optimal 
ontrol problem (3.3)�(3.7),(3.10) to beanswered in this paper is about its solvability in the 
lass of H-solutions. It shouldbe noted that to the best knowledge of the authors, the existen
e of optimal pairsto the above problem in the sense of De�nition 6 has not been studied in theliterature.5. On Compensated Compa
tness in Weighted Sobolev Spa
esWe begin this se
tion with some auxiliary results that will be useful later. Let
{(Bk, yk) = (Akρ, yk) ∈ ΞH}k∈N

be any sequen
e of H-admissible solutions. Withthis sequen
e we asso
iate the spa
e
Xρ =

{
~f ∈ L2(0, T ;L2(Ω, ρ dx))N | divρ

~f ∈ L2(0, T ;L2(Ω, ρ dx))
}and endow it with the norm

‖~f‖Xρ =
(
‖~f ‖2

L2(0,T ;L2(Ω,ρ dx))N + ‖divρ
~f ‖2

L2(0,T ;L2(Ω,ρ dx))

)1/2
.
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e {~fk ∈ Xρ

}
k∈N

is bounded if
sup
k→∞

‖~f‖Xρ < +∞.Further, for every k > 0 we de�ne a 
ut-o� operator Tk : R → R as follows
Tk(s) = max{min{s, k},−k}. By analogy with the well-known results for the
lassi
al Sobolev spa
es (see [10℄), it is easy to verify the following assertion:Proposition 1. Let y be an element of the weighted spa
e

W =
{
y ∈ L2(0, T ;Hρ), y

′ ∈ L2(0, T ;H−1
ρ )
}
.Then(i) Tk(y) ∈ W for every k > 0;(ii) ∇xTk(y) = χ{|y|<k}∇xy almost everywhere in Ω;(iii) Tk(y) → y almost everywhere in (0, T ) × Ω and strongly in L2(0, T ;Hρ) as

k → ∞.Taking these properties and Proposition 2.3 from [11℄ into a

ount, by thediagonal tri
k, we 
ome to the 
on
lusion:Proposition 2. Let ρ be an element of L1(Ω) with properties (3.1). Let
{gk ∈ W}k∈N

be a bounded sequen
e su
h that
gk ⇀ g in L2((0, T ); Ω),

∇gk ⇀ ∇g in L2(0, T ;L2(Ω, ρ dx))N ,
g′k ⇀ g′ in L2(0, T ;H−1

ρ )
as k → ∞. (5.1)Then there exists an in
reasing sequen
e of positive numbers {ℓk}k∈N

su
h that
ℓk → +∞ as k → ∞, and

Tℓk
(gk) → g strongly in L2(0, T ;L2(Ω)) as k → ∞. (5.2)Now we are in the position to give the main result of this se
tion (for 
ompa-rison we refer to the Compensated Compa
tness Lemma in [4, 15℄).Theorem 2. Let {~fk ∈ L2(0, T ;L2(Ω, ρ dx))N

}
k∈N

, ~f ∈ L2(0, T ;L2(Ω, ρ dx))N ,
{gk ∈ W}k∈N

, and g ∈ W be su
h that(i) ~fk ⇀ ~f in L2(0, T ;L2(Ω, ρ dx))N as k → ∞;(ii) gk ⇀ g in L2((0, T ) × Ω), ∇gk ⇀ ∇g in L2(0, T ;L2(Ω, ρk dx))
N , and

g′k ⇀ g′ in L2(0, T ;H−1
ρ ) as k → ∞.Then

lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇gk

)

RN
ρψdxdt =

∫ T

0

∫

Ω
ϕ
(
~f,∇g

)

RN
ρψ dxdt, (5.3)

∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ).



54 I. G. BALANENKO, P. I. KOGUTProof. We divide our proof into several steps. Our �rst step is to prove that
divρ

~fk ⇀ divρ
~f in L2(0, T ;L2(Ω, ρ dx)) as k → ∞. (5.4)Indeed, sin
e the sequen
e {divρ

~fk ∈ L2(0, T ;L2(Ω, ρ dx))
}

k∈N

is bounded, bythe 
ompa
tness 
riterium in re�exive spa
es, we 
an suppose that there existsan element φ ∈ L2(0, T ;L2(Ω, ρ dx)) su
h that
divρ

~fk ⇀ φ in L2(0, T ;L2(Ω, ρ dx)) as k → ∞.Then passing to the limit in the relation
∫ T

0

∫

Ω

(
~fk,∇ϕ

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω
ϕ
(
divρ

~fk

)
ρψ dxdt (5.5)

∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ) as k → ∞, we obtain
∫ T

0

∫

Ω

(
~f,∇ϕ

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω
ϕφρψ dxdt

∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ).Therefore (see De�nition 2), the element φ is the anisotropi
 divergen
e of theve
tor �eld ~f ∈ L2(0, T ;L2(Ω, ρ dx))N with respe
t to the weight ρ, i.e., φ =
divρ

~f ∈ L2(0, T ;L2(Ω, ρ dx)). So, (5.4) is valid.The next step is to study the asymptoti
 behavior as k → +∞ of the followingnumeri
al sequen
e
{∫ T

0

∫

Ω
ϕ
(
~fk,∇gk

)
RN

ρψ dxdt

}

k∈N

.To begin with, we note that as follows from Lemma 1, the element g ∈ W isthe strong limit of {gk ∈ W}k∈N
in L2((0, T ) × Ω)-topology. So, we 
an supposethat

gk → g a. e. in (0, T ) × Ω. (5.6)In view of estimates
∣∣∣∣
∫

Ω

(
~fk,∇ϕ

)

RN
ρ dx

∣∣∣∣ ≤
(∫

Ω

∥∥∥~fk

∥∥∥
2

RN
ρ dx

)1/2 (∫

Ω
‖∇ϕ‖2

RN ρ dx

)1/2

,

∣∣∣∣
∫

Ω
ϕ
(
divρ

~fk

)
ρ dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)‖ρ‖1/2
L1(Ω)

(∫

Ω

(
divρ

~fk

)2
ρ dx

)1/2and by density of C∞
0 (Ω) inHρ, the relation (5.5) 
an be extended to the fun
tions

ϕ of Hρ∩L∞(Ω). Sin
e Tℓ(gk) ∈ L∞(0, T ;Hρ∩L∞(Ω)) for every k ∈ N and ℓ ∈ N,it follows that
∫ T

0

∫

Ω

(
~fk,∇ (Tℓ(gk)ϕ)

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω

(
divρ

~fk

)
ϕTℓ(gk)ρψ dxdt



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 55for all ϕ ∈ C∞
0 (Ω) and ψ ∈ C∞

0 (0, T ). Due to this relation, we make use thefollowing equality
∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓ(gk)

)
RN

ρψ dxdt =

∫ T

0

∫

Ω

(
~fk,∇ (Tℓ(gk)ϕ)

)
RN

ρψ dxdt

−
∫ T

0

∫

Ω
Tℓ(gk)

(
~fk,∇ϕ

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω

(
divρ

~fk

)
ϕTℓ(gk)ρψ dxdt

−
∫ T

0

∫

Ω
Tℓ(gk)

(
~fk,∇ϕ

)
RN

ρψ dxdt

= −Ik
1,ℓ − Ik

2,ℓ ∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ). (5.7)Our next intention is to study the asymptoti
 behavior of the integrals Ik
1,ℓand Ik

2,ℓ as k → ∞. Sin
e the sequen
e {divρ
~fk ∈ L2(Ω, ρ dx)

}

k∈N

is bounded,the property (5.4) implies that
ρdivρ

~fk ⇀ ρdivρ
~f in L1((0, T ) × Ω). (5.8)Hen
e the family {ρdivρ

~fk

}
k∈N

is equi-integrable on (0, T ) × Ω. Therefore, be-
ause of the boundedness of {Tℓ(gk) − Tℓ(g)} the sequen
e
{
ρ (Tℓ(gk) − Tℓ(g)) divρ

~fk

}
k∈N

is equi-integrable on (0, T ) × Ωas well. Using the property (5.6), we have
Tℓ(gk) → Tℓ(g) a. e. in (0, T ) × Ω for every ℓ ∈ N.Then Lebesgue's Theorem implies

ρ (Tℓ(gk) − Tℓ(g)) divρ
~fk → 0 in L1((0, T ) × Ω) as k → ∞.Moreover, by (5.8), we get

Tℓ(g)ρdivρ
~fk ⇀ Tℓ(g)ρdivρ

~f in L1((0, T ) × Ω) as k → ∞.Combining these results, we obtain
ρTℓ(gk) divρ

~fk = ρ (Tℓ(gk) − Tℓ(g)) divρ
~fk

+ ρTℓ(g) divρ
~fk ⇀ ρTℓ(g) divρ

~f in L1((0, T ) × Ω). (5.9)On the other hand, the inequality
∥∥∥Tℓ(gk) divρ

~fk

∥∥∥
L2(0,T ;L2(Ω,ρ dx))

≤ ‖Tℓ(gk)‖L∞((0,T )×Ω)

×
∥∥∥divρ

~fk

∥∥∥
L2(0,T ;L2(Ω,ρ dx))

≤ C,immediately yields that {Tℓ(gk) divρ
~fk

}
k∈N

is bounded in L2(0, T ;L2(Ω, ρdx))for every ℓ ∈ N. Hen
e, there exists an element ηℓ ∈ L2(0, T ;L2(Ω, ρ dx)) su
hthat
Tℓ(gk) divρ

~fk ⇀ ηℓ in L2(0, T ;L2(Ω, ρdx)),



56 I. G. BALANENKO, P. I. KOGUTthat is, Tℓ(gk)ρdivρ
~fk ⇀ ηℓ ρ in L1((0, T ) × Ω). Then, in view of (5.9), we get

ηℓ = Tℓ(g) divρ
~f ρ-almost everywhere in Ω.As a result, we 
ome to the relation

lim
k→∞

Ik
1,ℓ =

∫ T

0

∫

Ω
Tℓ(g)ϕdivρ

~f ρψ dxdt. (5.10)Using similar arguments, we 
an prove that
lim

k→∞
Ik
2,ℓ =

∫ T

0

∫

Ω
Tℓ(g)

(
~f,∇ϕ

)

RN
ρψ dxdt.Thus, the passage to the limit in (5.7) leads us to the relation

lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓ(gk)

)
RN

ρψ dxdt

= −
∫ T

0

∫

Ω
Tℓ(g)ϕdivρ

~f ρψ dxdt−
∫ T

0

∫

Ω
Tℓ(g)

(
~f,∇ϕ

)
RN

ρψ dxdt

=

∫ T

0

∫

Ω

(
~f,∇ (Tℓ(g)ϕ)

)

RN
ρψ dxdt −

∫ T

0

∫

Ω
Tℓ(g)

(
~f,∇ϕ

)

RN
ρψ dxdt

=

∫ T

0

∫

Ω
ϕ
(
~f,∇Tℓ(g)

)
RN

ρψ dxdt ∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ) (5.11)whi
h holds true for every ℓ ∈ N.Let {Tℓk
(gk) ∈ Hρ}k∈N

be a sequen
e with properties (i)�(iii) whi
h is ensuredby Proposition 1. Then for any δ > 0 there exists a value k∗ ∈ N su
h that
(∫ T

0
‖Tℓk

(gk) − gk‖2
ρ dt

)1/2

≤ δ ∀ k > k∗ (by Proposition 1).By Cau
hy-Bunyakovski�i inequality we have the estimate
L = sup

k∈N

∣∣∣∣
∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓk

(gk) − gk

)
RN

ρψ dxdt

∣∣∣∣

≤ δ‖ϕ‖C(Ω)‖ψ‖C(0,T )‖~fk‖L2(0,T ;L2(Ω,ρ dx))N ≤ Cδ. (5.12)Taking into a

ount that χ{|gk|<ℓk} → χΩ strongly in L∞((0, T ) × Ω), it �nallyfollows that
∣∣∣∣ lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇gk

)
RN

ρψ dxdt −
∫ T

0

∫

Ω
ϕ
(
~f,∇g

)
RN

ρψ dxdt

∣∣∣∣by (5.12)
≤

∣∣∣∣ lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓk

(gk)
)

RN
ρψ dxdt

−
∫ T

0

∫

Ω
ϕ
(
~f,∇g

)
RN

ρψ dxdt

∣∣∣∣+ Cδby (5.11)
≤

∣∣∣∣ lim
k→∞

∫ T

0

∫

Ω
χ{|gk|<ℓk}ϕ

(
~f,∇g

)
RN

ρψ dxdt

−
∫ T

0

∫

Ω
ϕ
(
~f,∇g

)
RN

ρψ dxdt

∣∣∣∣+ Cδ
(by Proposition 1)

= Cδ.
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e δ > 0 is arbitrary, this 
on
ludes the proof.Remark 4. The key point of the proof of this lemma is the fa
t that the spa
e ofsmooth fun
tions C∞
0 (Ω) is dense in the weighted spa
e Hρ = H(Ω, ρdx). So, ingeneral, Lemma 2 does not hold for the 
ase when {gk}k∈N

is a bounded sequen
ein the weighted Sobolev spa
e Wρ.6. Existen
e Theorem for H-optimal solutionsOur prime interest in this se
tion deals with the solvability of optimal 
ontrolproblem (3.3)�(3.7),(3.10) in the 
lass of H-solutions. To begin with, we 
onsiderthe topologi
al properties of the set of H-admissible solutions ΞH to the problem(3.3)�(3.7),(3.10). To do so, we introdu
e the following 
on
epts:De�nition 7. We say that a sequen
e {(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N
is boun-ded if

sup
k∈N

[
‖Ak‖L∞(Ω;RN×N ) + ‖y′k‖L2(0,T ;H−1

ρ )

+ ‖yk‖L2((0,T )×Ω) + ‖∇yk‖L2(0,T ;L2(Ω,ρ dx))N

]
< +∞.De�nition 8. We say that a bounded sequen
e of H-admissible solutions

{(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N

τ -
onverges to a pair (B, y) ∈ L1(Ω; RN×N ) ×W if(a) B = Aρ, where A ∈ L∞(Ω; RN×N );(b) Ak
∗
⇀ A in L∞(Ω; RN×N );(
) yk ⇀ y in L2((0, T ) × Ω);(d) ∇yk ⇀ ∇y in L2(0, T ;L2(Ω, ρdx))N ;(e) y′k ⇀ y′ in L2(0, T ;H−1

ρ ).Theorem 3. For every f ∈ C∞
0 (RN ) the set ΞH is 
losed with respe
t to the

τ -
onvergen
e.Proof. Let {(Bk, yk)}k∈N ⊂ ΞH be a bounded τ -
onvergent sequen
e of H-admis-sible pairs to the optimal 
ontrol problem (3.6)�(3.7),(3.10). Let
(B0, y0) = (A0ρ, y0)be its τ -limit. Our aim is to prove that (B0, y0) ∈ ΞH .In view of the initial assumptions (3.6)�(3.7) we have:

Ak = [~a1 k, . . . ,~aN k] ∈Mβ
α (Ω)and |divρ ~ai k| ≤ γi ρ dx-a.e. in Ω ∀ i = 1, . . . , N, ∀ k ∈ N.
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e, the sequen
es {divρ ~ai k ∈ L2(Ω, ρ dx)
}

k∈N
∀ i = 1, . . . , N are uniformlybounded. The 
ompa
tness 
riterium in L2(Ω, ρ dx)-spa
es implies the existen
eof elements {φi ∈ L2(Ω, ρ dx)

}N

i=1
su
h that

divρ ~ai k ⇀ φi in L2(Ω, ρ dx) as k → ∞ ∀ i = 1, . . . , N.Then passing to the limit as k → ∞ in the relations
∫

Ω
(~ai k,∇ϕ)RN ρ dx = −

∫

Ω
ϕdivρ ~ai k ρ dx

∀ϕ ∈ C∞
0 (Ω), ∀ i ∈ {1, . . . , N} , ∀ k ∈ N,

−γi

∫

Ω
ϕρdx ≤

∫

Ω
ϕdivρ ~ai k ρ dx ≤ γi

∫

Ω
ϕρdx

∀ i ∈ {1, . . . , N} , ∀ k ∈ N, ∀ϕ ≥ 0,

Ak = [~a1 k, . . . ,~aN k] ∈Mβ
α (Ω),we 
ome to the 
on
lusion:

divρ~ai k ⇀ φi = divρ~ai 0 in L2(Ω, ρ dx) as k → ∞, (6.1)
|divρ ~ai 0| ≤ γi ρ− a.e. in Ω ∀ i ∈ {1, . . . , N} , (6.2)

Ak
∗
⇀ A0 = [~a1 0, . . . ,~aN 0] ∈Mβ

α (Ω). (6.3)Hen
e the limit matrix B0 = A0ρ is an admissible 
ontrol to the problem (3.6)�(3.7),(3.10).It remains to show that the pair (B0, y0) is related by the energy equality(4.3). We will do it in several steps. Step 1. To begin with, we note that, by theinitial assumptions there exists of a 
onstant C > 0 su
h that
‖yk‖L2((0,T )×Ω) ≤ C, ‖∇yk‖L2(0,T ;L2(Ω,ρ dx))N ≤ C,

‖y′k‖L2(0,T ;H−1
ρ ) ≤ C ∀ k ∈ N.Using the standard arguments, we 
an suppose that there exists an element y∗ ∈

W su
h that, up to a subsequen
e we have (see also Lemma 1)
yk ⇀ y∗ weakly in the Sobolev spa
e L2(0, T ;Hρ), (6.4)

y′k ⇀ y′∗ in L2(0, T ;H−1
ρ ), (6.5)and yk → y∗ in L2((0, T ) × Ω). (6.6)Further, we note that the sequen
e

{Ak∇yk}k∈N
is bounded in L2(0, T ;L2(Ω, ρ dx))N .Hen
e passing to a subsequen
e if ne
essary, we may assume that there exists afun
tion ~η ∈ L2(0, T ;L2(Ω, ρ dx))N su
h that

Ak ∇yk =: ~ηk ⇀ ~η in L2(0, T ;L2(Ω, ρ dx))N . (6.7)



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 59Taking these fa
ts into a

ount, we 
an pass to the limit in the integral identity
−
∫ T

0

∫

Ω
ykϕψ

′ dxdt+

∫ T

0

∫

Ω

((
Ak ∇yk,∇ϕ

)
RN

ρ+ ykϕ
)
ψ dxdt

=

∫ T

0

∫

Ω
fϕψ dxdt ∀ϕ ∈ C∞

0 (Ω),∀ψ ∈ C∞
0 (0, T ) (6.8)as k → ∞. As a result, we get

−
∫ T

0

∫

Ω
y∗ϕψ

′ dxdt +

∫ T

0

∫

Ω
((~η,∇ϕ)

RN ρ+ y∗ϕ)ψ dxdt

=

∫ T

0

∫

Ω
fϕψ dxdt ∀ϕ ∈ C∞

0 (Ω),∀ψ ∈ C∞
0 (0, T ) (6.9)or −div (ρ0 ~η ) = f − y∗ − y′∗ in the sense of distributions.Step 2. Here we show that ~η = A0 ∇y∗. To do so, we introdu
e the followings
alar fun
tion

v(x) = (~z, x)RN , (6.10)where ~z is a �xed element of R
N . By the initial assumptions, we have

∫ T

0

∫

Ω
ϕ
(
Ak (∇yk −∇v) ,∇yk −∇v

)
RN

ρψ dxdt ≥ 0, ∀ϕ ≥ 0,∀ψ ≥ 0,or, in view of (6.10), this inequality 
an be rewritten as
∫ T

0

∫

Ω
ϕ
(
Ak (∇yk − ~z ) ,∇yk − ~z

)
RN

ρψ dxdt ≥ 0. (6.11)Our next intention is to pass to the limit in (6.11) as k → ∞ using Theorem 2.Having put in the statement of this lemma: ~fk = Ak∇ (yk − v), and gk = yk − vfor all k ∈ N, we see that the sequen
e {gk = yk − v}k∈N
satis�es all assumptionsof Theorem 2. In view of (6.7) and (6.3), we have

~fk = Ak∇ (yk − v) = Ak (∇yk − ~z) ⇀ ~η −A0~z in L2(0, T ;L2(Ω, ρ dx))N .(6.12)It remains to show that the sequen
e {~fk = Ak∇ (yk − v)
}

k∈N

is bounded in Xρ.Indeed, from integral identity (6.8), we get
−
∫ T

0

∫

Ω
divρ

(
Ak ∇yk

)
ϕρψ dxdt

=

∫ T

0

∫

Ω
ϕ (f − yk)ψ dxdt +

∫ T

0

∫

Ω
ykϕψ

′ dxdt ∀ k ∈ N.Sin
e (f − yk − y′k) ⇀ (f − y∗ − y′∗) = ρ−1 (f − y∗ − y′∗) ρ in L2((0, T ) × Ω), itfollows that the sequen
e
{divρ (Ak∇yk)}k∈N

is weakly 
ompa
t in L2(0, T ;L2(Ω, ρ dx)),
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divρk

(Ak∇yk) ⇀ ρ−1
(
y∗ + y′∗ − f

) in L2(0, T ;L2(Ω, ρ dx)). (6.13)To apply Theorem 2 we have to show that the sequen
e {divρ

(
Ak ~z

)
}k∈N isalso weakly 
onvergent in L2(0, T ;L2(Ω, ρ dx)), where the elements divρ

(
Ak ~z

)are de�ned as
∫

Ω

(
Ak ~z,∇ϕ

)
RN ρ dx = −

∫

Ω
ϕdivρ

(
Ak ~z

)
ρ dx ∀ϕ ∈ C∞

0 (Ω), ∀ k ∈ N.Indeed, for every test fun
tion ϕ ∈ C∞
0 (Ω), we have

∫

Ω

(
Ak ~z,∇ϕ

)
RN ρ dx =

∫

Ω






(~a1 k(x), ~z)RN

. . .
(~an k(x), ~z)RN


 ,∇ϕ




RN

ρ dx

=

∫

Ω

N∑

i=1

(~ai k(x), ~z)RN

∂ϕ

∂xi
ρ dx =

∫

Ω

N∑

i=1

N∑

j=1

ak
i j(x)

∂ϕ

∂xi
zjρ dx =

=

N∑

j=1

zj

∫

Ω

(~aj k(x),∇ϕ)RN ρ dx = −
N∑

j=1

zj

∫

Ω

ϕdivρ ~aj k ρ dx = Jk. (6.14)Then using (6.1), we get
lim

k→∞
Jk = −

N∑

j=1

zj lim
k→∞

∫

Ω

ϕdivρ ~aj k ρ dx = −
N∑

j=1

zj

∫

Ω

ϕdivρ ~aj 0 ρ dx. (6.15)Applying the 
onverse transformations with (6.15) as we did it in (6.14), we arriveat
lim

k→∞

∫

Ω
ϕdivρ

(
Ak ~z

)
ρ dx = − lim

k→∞

∫

Ω

(
Ak ~z,∇ϕ

)
RN ρ dx

= −
∫

Ω

(
A0 ~z,∇ϕ

)
RN ρ dx =

∫

Ω
ϕdivρ

(
A0 ~z

)
ρ dx ∀ϕ ∈ C∞

0 (Ω). (6.16)Thus, from (6.13) and (6.16) it �nally follows that
divρ (Ak (∇yk − ~z )) ⇀ ρ−1(y∗ + y′∗ − f) − divρ

(
A0 ~z

)in L2(0, T ;L2(Ω, ρ dx)). (6.17)As a result, 
ombining properties (6.7), (6.17), (6.12) and the fa
t that
∇(yk − v) ⇀ ∇(y∗ − v) in L2(0, T ;L2(Ω, ρ dx))N ,we see that all suppositions of Theorem 2 are ful�lled. So, passing to the limit ininequality (6.11) as k → ∞, we get

∫ T

0

∫

Ω

ϕ(x) (~η −A0~z,∇y∗ − ~z )
RN ρψ dxdt ≥ 0, ∀~z ∈ R

N
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0 (Ω) and ψ ∈ C∞

0 (0, T ). After lo
alization, we have
ρ0

(
~η− A0 ~z,∇y∗ − ~z

)
RN ≥ 0, ∀~z ∈ R

N .Hen
e
~η = A0∇y∗ ρ-almost everywhere in (0, T ) × Ω. (6.18)Step 3. Taking (6.18) into a

ount, we 
an represent the integral identity (6.9)in the form

−
∫ T

0

∫

Ω
y∗ϕψ

′ dxdt +

∫ T

0

∫

Ω

((
A0 ∇y∗,∇ϕ

)
RN ρ+ y∗ ϕ

)
ψ dxdt

=

∫ T

0

∫

Ω
fϕψ dxdt ∀ϕ ∈ C∞

0 (Ω),∀ψ ∈ C∞
0 (0, T ), (6.19)or y′∗ − div (ρA0∇y∗ ) + y∗ = f in the sense of distributions. Sin
e C∞

0 (Ω) densein Hρ, this relation remains true for all ϕ ∈ Hρ. Hen
e, taking ϕψ = y∗ as a testfun
tion in (6.19), we arrive to the energy equality
1

2

∫

Ω
y2
∗ dx

∣∣∣∣
T

0

+

∫ T

0

∫

Ω

((
A0 ∇y∗,∇y∗

)
RN ρ+ y2

0

)
dxdt =

∫ T

0

∫

Ω
fy∗ dxdt.In order to 
on
lude the proof it remans to pass to the limit in the equality

∫

Ω
y0ϕdx = lim

t→+0

∫

Ω
ykϕdxwhi
h holds true for all k ∈ N. As a result, using (6.4), we obtain

lim
t→+0

∫

Ω
y∗ϕdx =

∫

Ω
y0ϕdx.Thus the τ -limit pair (B0, y∗) belongs to set ΞH , and this 
on
ludes the proof.Now we are in a position to state the existen
e of H-optimal pairs to theproblem (3.6)�(3.7),(3.10).Theorem 4. Let ρ be a degenerate weight in the sense of De�nition 1 satisfyingthe 
onditions (3.1). Let also f ∈ L2((0, T ) × Ω) and yd ∈ L2(Ω) be givenfun
tions. Then the optimal 
ontrol problem (3.6)�(3.7), (3.10) admits at leastone H-solution

(Bopt, yopt) ∈ ΞH ⊂ L1(Ω; RN×N ) ×W.Proof. First of all we note that for the given fun
tion f ∈ L2(Ω) and everyadmissible 
ontrol B = Aρ ∈ Bad, there exists an H-solution y = y(B, f) ∈ Hρsu
h that energy equality (4.3) holds true. Let {(Bk, yk) = (Akρ, yk) ∈ ΞH}k∈Nbe an H-minimizing sequen
e to the problem (3.6)�(3.7),(3.10). Then as followsfrom the inequality
inf

(B,y)∈ΞH

I(B, y) = lim
k→∞

[
ζ

∫ T

0

∫

Ω
|yk(t, x) − yd(t, x)|2 dxdt

+

∫ T

0

∫

Ω
|∇yk(t, x)|2RN ρ dxdt + ‖Ak‖L∞(Ω,RN×N )

]
< +∞, (6.20)
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onstant C > 0 su
h that
sup
k∈N

‖yk‖L2(Ω) ≤ C, sup
k∈N

‖∇yk‖L2(Ω,ρ dx)N ≤ C.Hen
e, in view of the de�nition of the 
lass of admissible 
ontrols Bad, we mayassume that, within a subsequen
e, there exist a distribution y∗ ∈ W and a matrix
A∗ ∈ L∞(Ω; RN×N ) su
h that

Ak
∗
⇀ A∗ in L∞(Ω, RN×N ), yk ⇀ y∗ in L2(0, T ;Hρ),

y′k ⇀ (y∗)′ in L2(0, T ;H−1
ρ ).

(6.21)Using the arguments of the proof of Theorem 3, it 
an be shown that the matrix
B∗ = A∗ρ ∈ L1(Ω, RN×N ) is admissible 
ontrol to the problem (3.6)�(3.7),(3.10).As a result, the pair (B∗, y∗) is the τ -limit of the H-minimizing sequen
e

{(Bk, yk) ∈ ΞH}k∈N
.Then, by Theorem 3, this pair is an H-admissible to the problem (3.6)�(3.7),(3.10). Sin
e the 
ost fun
tional I is lower τ -semi
ontinuous, we get

I(B∗, y∗) ≤ lim inf
k→∞

I(Bk, yk) = inf
(B, y)∈ΞH

I(B, y).Hen
e (B∗, y∗) is an H-optimal pair, and this 
on
ludes the proof.Referen
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