УДК 533.6001.5:62-854

М.Л.Сургайло (Национальный аэрокосмический университет им. Н.Е.Жуковского "ХАИ", Харьков)

Анализ результатов экспериментальных исследований ветроагрегатов вертикально-осевой схемы с прямыми лопастями с профилем NACA-0018M

Исследовалось влияние скорости набегающего потока на максимальное значение коэффициента использования энергии ветра и оптимальный угол установки лопасти, а также влияние окружного коэффициента заполнения ротора и удлинения лопастей на аэродинамические характеристики моделей ветроагрегатов вертикально-осевой схемы с прямыми лопастями с модифицированным профилем NACA-0018M с различным числом лопастей.

Досліджено вплив швидкості набігаючого потоку на максимальне значення коефіцієнта використання енергії вітру і оптимальний кут установки лопаті, а також вплив окружного коефіцієнта заповнення ротора і подовження лопатей на аеродинамічні характеристики моделей вітроагрегатів вертикально-осьової схеми з прямими лопатями з модифікованим профілем NACA-0018M з різним числом лопатей.

Энергия ветра может использоваться практически повсюду, поэтому во многих странах мира ветроэнергетика является одной из главных составляющих альтернативной энергетики. В последние десятилетия заметно увеличился интерес к ветроагрегатам с вертикальной осью, поскольку они имеют ряд преимуществ по сравнению с горизонтальноосевыми: независимость работы вертикальноосевых ветроагрегатов от направления ветра, относительная простота конструкции, меньшее вредное воздействие на окружающую среду и т.д.

Целью экспериментальных исследований является поиск оптимальных геометрических параметров ветроагрегатов с вертикальной осью вращения (таких как удлинение лопастей, коэффициент заполнения, относительная толщина профиля лопасти), которые обеспечат наибольший коэффициент использования ветра.

В лаборатории дозвуковых скоростей Национального аэрокосмического университета были проведены экспериментальные исследования моделей ветроагрегатов вертикально-осевой схемы с прямыми лопастями в аэродинамической трубе малых скоростей замкнутого типа с открытой рабочей частью АТ-3 ХАИ. Диаметр выходного сечения сопла аэродинамической трубы равен $D_c = 1,5$ м. Максимальная скорость потока в рабочей части аэродинамической трубы равна $V_{\infty \text{max}} = 45 \text{ M/}_{\text{с}}$, длина рабочей части L = 2050 мм. Начальная степень турбулентности потока в рабочей части аэродинамической трубы АТ-3 составляет $\varepsilon = 0,68\%$ [1].

Основные геометрические параметры исследуемых моделей роторов сведены в таблицу 1: количество лопастей *i*; хорда лопасти b_n , м; профиль лопасти, диаметр *D*, м и высота *H*, м ротора; окружной коэффициент заполнения $\sigma_{o\kappa p} = i b_n / \pi D$ [2]; перечень углов установки, при которых проводился эксперимент. В качестве исходного профиля лопасти был выбран симметричный профиль NACA-0018 с затупленной задней кромкой, который был обозначен NACA-0018М. Начиная с максимальной

Таблица 1. Основные геометрические параметры исследуемых моделей ветроагрегатов вертикально-осевой схемы

Ветроагрегат, №	$b_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	<i>і</i> , шт.	$\sigma_{\scriptscriptstyle o\kappa p}$	<i>D</i> , м	Н , м	λ
1	0,080	2	0,045	1,12	0,570	7,18
2	0,057	2	0,032	1,12	0,570	10,00
3	0,110	3	0,105	1,00	0,700	6,36
4	0,110	6	0,210	1,00	0,575	5,23

© М.Л.Сургайло, 2013

толщины профиля, контур верхней кормовой поверхности изменялся по параболическому закону до утолщенной задней кромки, что увеличивало полноту верхней и нижней кормовых поверхностей профиля (относительная толщина задней кромки $\overline{t}_{3,\kappa} = 1,8\%$).

Профиль траверс – плоская пластина, скругленная по передней и задней кромкам. Траверсы крепились к круглым шайбам, диаметр которых $d_{\mu} = 125$ мм, а лопасти ротора крепились к шайбам.

В результате испытаний моделей ветроагрегатов вертикально-осевой схемы были получены крутящий момент $M_{\kappa p}$ модели ветроагрегата, Нм; механическая мощность N модели ветроагрегата, Вт, по которым рассчитывались коэффициенты крутящего момента ротора, использования энергии ветра и быстроходности соответственно:

$$c_m = \frac{M_{\kappa p}}{q_{\infty} RS}; \quad c_p = \frac{N}{q_{\infty} V_{\infty} S}; \quad z = \frac{\omega R}{V_{\infty}},$$

где R – радиус ротора, м; S – ометаемая площадь ротора, м²; V_{∞} и $q_{\infty} = 0,5\rho_{\infty}V_{\infty}^2$ – скорость и скоростной напор набегающего потока в рабочей части аэродинамической трубы соответственно, м/с и Па.

Для исследования влияния скорости набегающего потока V_{∞} на величину максимального коэффициента использования ветра проводились испытания модели ветроагрегата №3 при различных скоростях набегающего потока (11 м/с, 9 м/с, 7 м/с) при ряде углов установки лопасти. Зависимости $c_p(z, V_{\infty})$ представлены на рис. 1-4.

лопасти $\varphi_{\pi} = \theta^{\circ}$.

Рис. 2. Зависимости $c_p(z, V_{\infty})$ при угле установки

Рис. 3. Зависимости $c_p(z, V_{\infty})$ при угле установки лопасти $\varphi_n = 4^{\circ}$.

Відновлювана енергетика. 2013. № 4

Из рис. 1-4 видно, что зависимости $c_p(z)$ для ветроагрегатов с прямыми лопастями имеют линейный характер на участке от z_{max} при $c_p = 0$ до значения примерно $(0,8...0,85) c_{p_{\text{max}}}$ и могут быть представлены таким образом:

$$c_p = c_p^z \left(z - z_{\max} \right), \tag{1}$$

где $c_p^z = \frac{dc_p}{dz}$ – производная коэффициента использования энергии ветра по коэффициенту быстроходности. Скорость набегающего потока V_{∞} , а следовательно, и число Рейнольдса:

$$\operatorname{Re} = \frac{V_{\infty}b}{V}$$

не влияет на производную c_p^z . Здесь b – хорда профиля, м; v – кинематический коэффициент вязкости, м²/с. С увеличением скорости набегающего потока возрастают величины максимального коэффициента использования энергии ветра и максимального коэффициента быстро $c_{p_{\max}}$ ходности z_{max}, а значение минимального коэффициента быстроходности практически не изменяется. С учетом того, что при переходе от модели, исследуемой в аэродинамической трубе, к ветроагрегату, работающему в натурных условиях, набегающий поток будет иметь меньшую начальную степень турбулентности ε , а следовательно, большим будет число Re, то для натурного объекта коэффициенты использования энергии ветра будут большими. На рис. 5 показаны зависимости $c_{p_{\max}}(\varphi_{\pi}, V_{\infty} = const)$, из которых видно, что изменение скорости набегающего потока не изменяет характер кривых и значение оптимального угла установки лопасти.

Для исследования влияния угла установки лопасти, окружного коэффициента заполнения и удлинения ротора на зависимости $c_p(z)$ проводились испытания моделей №1-4 при различных углах установки при одном значении скорости набегающего потока $V_{\infty} \approx 11 \frac{M}{C}$, т.к. ранее было показано, что скорость набегающего потока не влияет на величину оптимального угла установки.

Полученные зависимости $c_p(z)$ представлены на рис. 6-9.

Рис. 8. Зависимости $c_p = f(z, \phi_n)$ для модели

По рис. 6-9 составлена таблица 2, в которой для каждой модели ветроагрегата приведены значения максимального коэффициента использования энергии ветра $c_{p_{\rm max}}$, максимальные и минимальные коэффициенты быстроходности $z_{\rm min}$ и

ISSN 1819-8058

 $z_{\rm max}$ при различных углах установки лопасти. По данным таблицы 2 на рис. 10 для каждой исследуемой модели построены зависимости $c_{p_{\rm max}} = f(\varphi_{\pi}).$

Оптимальные значения углов установки $\varphi_{n_{opt}}$, полученные из рис. 10, а также соответствующие им характеристики четырех моделей при скорости набегающего потока $V_{\infty} \approx 11 \, \text{M/c}$ представлены в таблице 3, по данным которой на рис. 11-14 построены зависимости $c_{p_{\text{max}}} = f(\varphi_{\pi}),$ $c_{p_{\text{max}}} = f(\lambda), \ c_{p_{\text{max}}} = f(\sigma_{o\kappa p}), \ c_{p}^{z} = f(\sigma_{o\kappa p})$

Габлица	2. К	определению	оптимяльного	угля	устяновки
гаолица	2. IX	определению	UIII MMAJIDHUIU	yı Jia	VUI ANUDKI

Модель №1			Модель №3			Модель №4		
$\boldsymbol{\varphi}_{\scriptscriptstyle \mathcal{R}}$	c _{pmax}	z _{min}	$\varphi_{\scriptscriptstyle R}$	c _{pmax}	z _{min}	φ_{π}	c _{pmax}	z _{min}
0	0,426	3,332	0	0,350	2,550	4	0,209	1,792
2	0,465	3,525	2	0,389	2,391	6	0,230	1,794
4	0,424	3,769	4	0,396	2,436	8	0,228	1,806
			6	0,334	2,673			

T C 2 V			U		
Тарлина з ха	пяктепистики молелеи	RETROSFREGTOR R	ратикя пьно-осевои схемы л	ппя аптимяльных уг	пов устяновки
1 aomini a 0. 21a	рактернетики моделен	berpoarperatob b	prinkalibilo occibon exemple	gain on innaandindia yr.	Job yeranobki

№ модели	λ	$\varphi_{\pi_{opt}}$	c_p^z	z _{max}	z _{min}	c _{pmax}
1	7,18	2	-0,3152	5,240	3,525	0,4647
2	10,00	0	-0,2690	5,540	4,154	0,3364
3	6,36	4	-0,4540	3,554	2,436	0,3960
4	5,23	6	-0,3880	2,530	1,794	0,2300

Из рис. 11-14 видно, что для вертикальноосевых ветроагрегатов с прямыми лопастями при неизменной толщине профиля $\overline{c} = 0,18$ оптимальными являются угол установки $\varphi_{\pi_{opt}} \approx 2^{\circ}$, удлинение $\lambda_{opt} = 8$, окружной коэффициент заполнения $\sigma_{o\kappa p_{opt}} \approx 0,05$. При изменении окружного коэффициента заполнения от 0,032 до 0,105 производная c_p^z увеличивается по абсолютной величине на 68%.

Выводы. Результаты проведенных экспериментальных исследований необходимы для выбора оптимальных конструктивных параметров при проектировании вертикально-осевых ветроагрегатов с прямыми лопастями, что позволит наиболее

эффективно использовать энергию ветра. Данная работа может быть также полезна для согласования теоретических расчетов аэродинамических характеристик ветроагрегатов с экспериментальными данными.

1. Аэродинамика ветродвигателя с вертикальной осью вращения: отчет о НИР / Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ"; рук. Чмовж В.В.; исполн. Еремеев И.Д., Соляник П.Н., Сургайло М.Л., Чмовж В.В., Усик Ю.Ф. – Харьков, 2007. – 109 с. – № ГР 0107U001786. – Инв. № 0207U006273.

2. Сургайло М.Л. Определение коэффициентов поля скоростных напоров вблизи вращающегося ротора вертикально-осевой схемы [Текст] / И.А. Ганган, И.Д. Еремеев, П.Н. Соляник, М.Л. Сургайло, В.В. Чмовж // Авиационнокосмическая техника и технология. – 2012. – Вып. 2(89). – С. 50–54.