ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.171+539.172

https://doi.org/10.15407/jnpae2018.04.341

С. Ю. Межевич¹, А. Т. Рудчик^{1,*}, К. Русек², К. В. Кемпер³, А. А. Рудчик¹, О. А. Понкратенко¹, С. Б. Сакута⁴

¹ Інститут ядерних досліджень НАН України, Київ, Україна ² Лабораторія важких іонів Варшавського університету, Варшава, Польща ³ Фізичний факультет, Національний університет Флориди, Таллахассі, США ⁴ Національний дослідницький центр «Курчатовський інститут», Москва, Росія

*Відповідальний автор: rudchik@kinr.kiev.ua

МЕХАНІЗМИ РЕАКЦІЇ ¹³С(¹¹В, ⁷Li)¹⁷О ПРИ ЕНЕРГІЇ ІОНІВ ¹¹В 45 МеВ

Досліджено реакцію ¹³C(¹¹B, ⁷Li)¹⁷O при енергії E_{na6} (¹¹B) = 45 МеВ для основних і збуджених станів ядер ⁷Li і ¹⁷O. Експериментальні дані реакції проаналізовано за методом зв'язаних каналів реакцій (МЗКР). У схему зв'язку включалися канали пружного розсіяння ядер ¹³C + ¹¹B та одно- і двоступінчасті реакції передач нуклонів і кластерів з виходом ядер ⁷Li + ¹⁷O. Необхідні для МЗКР-розрахунків спектроскопічні амплітуди нуклонів і кластерів обчислено за трансляційно-інваріантною моделлю оболонок (ТІМО). Для вхідного каналу реакції використовувався потенціал Вудса - Саксона (WS), параметри якого було отримано з МЗКР-аналізу експериментальних даних пружного розсіяння ядер ¹¹B + ¹³C, а для вихідного каналу ⁷Li + ¹⁷O потенціал WS та фолдінгпотенціал (DF) взаємодії ядер ⁷Li + ¹⁷O з уявною складовою, параметри якої отримано з підгонки МЗКРперерізів реакції ¹³C(¹¹B, ⁷Li)¹⁷O до експериментальних даних. Таким же методом визначено також параметри уявної частини і потенціалу WS. Параметри дійсної частини цього потенціалу отримано з підгонки до периферійної області потенціалу DF. Виявлено ізотопічні відмінності перерізів реакції ¹³C(¹¹B, ⁷Li)¹⁷O при використанні потенціалів взаємодії ядер ⁷Li + ¹⁷O, ⁷Li + ¹⁶O та ⁷Li + ¹⁸O у вихідному каналі реакції.

Ключові слова: ядерні реакції, оптична модель, метод зв'язаних каналів реакцій, фолдінг-модель, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

1. Вступ

Реакції важких іонів з ядрами важливі для отримання інформації про структуру ядер, механізми ядерних процесів, потенціали взаємодії стабільних і нестабільних ядер, спектроскопію збуджень ядер тощо.

У даній роботі досліджено реакцію ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при енергії $E_{\pi a \delta}({}^{11}B) = 45$ МеВ. Отримані нові експериментальні дані диференціальних перерізів цієї реакції в повному кутовому діапазоні для основних станів ядер ${}^{7}Li$ і ${}^{17}O$, збудженого стану 0,478 МеВ (1/2⁻) ядра ${}^{7}Li$ та збуджених станів 0,871 - 6,356 МеВ ядра ${}^{17}O$ досліджено в рамках МЗКР для багатьох типів однота двонуклоних передач нуклонів і кластерів.

У роботі [1] було подано експериментальні дані реакції ¹³C(¹¹B, ⁷Li)¹⁷О при енергії $E_{\rm лаб}(^{11}B) =$ = 45 МеВ без опису методики вимірювань та представлено результати МЗКР-аналізу даних реакції з використанням передач лише α-кластера (потенціал для каналу ⁷Li + ¹⁷О було використано з роботи [2]) і ⁶Li-кластера та статистичної моделі. Експериментальні дані було задовільно описано МЗКР-перерізами α-передачі лише на малих кутах. Тому в даній роботі подано опис методики вимірювань та результати аналізу експериментальних даних реакції ¹³C(¹¹B, ⁷Li)¹⁷О за МЗКР із використанням значного числа як одноступінчастих передач важких кластерів, так і двоступінчастих передач нуклонів і легких кластерів.

2. Методика експерименту

Диференціальні перерізи пружного і непружного розсіяння іонів ¹¹В ядрами ¹³С та реакцій ¹³С(¹¹В, Х) вимірювалися з використанням пучка іонів ¹¹В Варшавського циклотрона U-200P [3] при енергії $E_{ла6}(^{11}B) = 45$ МеВ. Мішенню служила самопідтримна фольга вуглицю товщиною 500 мкг/см² із 90%-ним збагаченням ¹³С. Розкид енергії пучка ¹¹В на мішені не перевищував 0,5 %.

Продукти реакцій реєструвалися за допомогою (ΔE -E)-спектрометрів, ΔE -детекторами яких була іонізаційна камера з трьома вхідними вікнами та трьома кремнієвими E-детекторами товщиною 1,0 мм на виході камери. Робочим газом в іонізаційній камері використовувався аргон при тиску, при якому втрати енергії ΔE продуктами реакцій у камері дорівнювали втратам енергії у кремнійовому детекторі товщиною 15 мкм.

В експерименті використовувалися електроніка типу САМАС та комп'ютерна система SMAN [4] для реєстрації та сортування спектрометричної інформації у вигляді двовимірних $\Delta E(E)$ -спектрів. Більше відомостей про методики

[©] С. Ю. Межевич, А. Т. Рудчик, К. Русек, К. В. Кемпер, А. А. Рудчик, О. А. Понкратенко, С. Б. Сакута, 2018

вимірювань подано в роботі [3], де опубліковано результати дослідження пружного і непружного розсіяння ядер ${}^{13}C + {}^{11}B$ при енергії $E_{nab}({}^{11}B) = 45$ MeB.

Рис. 1. Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹³С(¹¹В, *X*) при енергії $E_{лаб}(^{11}$ В) = 45 MeB.

Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹³С(¹¹В, X) показано на рис. 1. Видно, що експериментальна методика забезпечувала реєстрацію та ідентифікацію продуктів реакцій із зарядами Z = 3 - 8.

Типові енергетичні спектри ядер ⁷Li i ¹⁷O з реакції ¹³C(¹¹B, ⁷Li)¹⁷O показано на рис. 2 i 3 з неперервним фоном від багаточастинкових реакцій (*a*) та з вилученим фоном (δ). Кривими на рисунках показано фони, отримані наближенням мінімумів експериментальних спектрів параметризованими функціями сігмоїдального типу за допомогою програми PEAKFIT (*a*), та наближення експериментальних піків симетричними гауссіанами (δ).

Площі гауссіанів використовувалися для обчислення диференціальних перерізів реакції ¹³C(¹¹B, ⁷Li)¹⁷O для кутів $\theta_{c.ц.м.}$ (⁷Li) спектрів ⁷Li та для кутів $\theta_{c.ц.м.}$ (⁷Li) = 180°- $\theta_{c.ц.м.}$ (¹⁷O) спектрів ¹⁷O. Для абсолютизації перерізів реакції ¹³C(¹¹B, ⁷Li)¹⁷O використовувався нормувальний множник пружного і непружного розсіяння ¹¹B на ядрах ¹³C [3], яке вимірювалося разом із цією реакцією. Похибка абсолютизації диференціальних перерізів реакції не перевищувала 20 %.

Рис. 2. Типові енергетичні спектри ⁷Li з реакції ¹³C(¹¹B, ⁷Li)¹⁷О при енергії $E_{\text{лаб}}(^{11}\text{B}) = 45$ MeB з неперервним фоном від багаточастинкових реакцій (*a*) та з вилученим фоном (*б*). Криві – неперервні фони (*a*) та симетричні гауссіани (*б*).

Рис. 3. Типові енергетичні спектри ¹⁷О з реакцій ¹³С(¹¹В, ¹⁷О)⁷Li при енергії $E_{\text{лаб}}(^{11}\text{B}) = 45 \text{ МеВ з непе$ рервним фоном від багаточастинкових реакцій (*a*) та звилученим фоном (*б*). Криві – неперервні фони (*a*) та симетричні гауссіани (*б*).

3. Аналіз експериментальних даних

Експериментальні дані реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ аналізувалися за методом зв'язаних каналів реакцій (МЗКР). У схему зв'язку включалися пружне і непружне розсіяння ядер ${}^{11}B + {}^{13}C$ (основний і збуджений стани 2,124 МеВ (1/2⁻) ядра ${}^{11}B$) та реакції передач, діаграми яких показано на рис. 4.

$$\frac{13C}{11B} \frac{17O}{7Li} + \frac{13C}{11B} \frac{15N}{9Be7Li} \frac{17O}{11B} + \frac{13C}{11B} \frac{14N}{9Be7Li} + \frac{13C}{11B} \frac{14N}{9Be7Li} + \frac{13C}{11B} \frac{14N}{9Be7Li} + \frac{13C}{11B} \frac{14O}{7C} + \frac{13C}{7C} + \frac{13C}{7C} + \frac{14O}{7C} + \frac{1$$

Рис. 4. Діаграми механізмів реакції ¹³С(¹¹В, ⁷Li)¹⁷О.

У МЗКР-розрахунках для вхідного та вихідного каналів реакції ¹³С(¹¹В, ⁷Li)¹⁷О використовувалися потенціали Вудса - Саксона (WS)

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_s \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

та кулонівські потенціали взаємодії рівномірно заряджених куль

$$V_{C}(r) = \begin{cases} Z_{P} Z_{T} e^{2} (3 - r^{2} / R_{C}^{2}) / 2R_{C}, & r \leq R_{C}, \\ Z_{P} Z_{T} e^{2} / r, & r > R_{C}. \end{cases}$$
(2)

Тут

$$R_i = r_i (A_P^{1/3} + A_T^{1/3}) \ (i = V, W, C), \tag{3}$$

де A_P , A_T і Z_P , Z_T — маси та заряди ядер вхідного і вихідного каналів реакції. У розрахунках потенціалів кулонівської взаємодії ядер використовувався параметр $r_C = 1,25$ фм.

Хвильові функції зв'язаних станів нуклонів і кластерів *x* у системах A = C + x, що передалися в реакції ¹³C(¹¹B, ⁷Li)¹⁷O, обчислювалися стандартним способом підгонки глибини V_0 потенціалу WS з параметрами $a_V = 0,65$ фм і $r_V = 1,25 \cdot A^{1/3} / (C^{1/3} + x^{1/3})$ до їхньої енергії зв'язку в цих системах.

МЗКР-розрахунки реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ проводилися за допомогою програми FRESCO [15]. У цих розрахунках для вхідного каналу ${}^{11}B + {}^{13}C$ використовувався потенціал WS, параметри якого отримано при M3КР-аналізі експериментальних даних пружного і непружного розсіяння цих ядер [3].

Для вихідного каналу ${}^{7}Li + {}^{17}O$ реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ використовувалися потенціал WS та фолдінг-потенціал (*DF*)

$$U_{DF}(r) = V_{DF}(r) + iW_{DF}(r) = V_{DF}(r) + ikV_{DF}(r),$$

обчислений за методом подвійної згортки за допомогою програми DFPOT [9], використовуючи розподіли густин зарядів в ядрах ⁷Li i ¹⁷O з роботи [10] та потенціал нуклон-нуклонної взаємодії M3Y Рейда (Reid).

Параметри потенціалів WS, використані в розрахунках перерізів реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$, подано в табл. 1.

Ядра	<i>Е</i> _{с.ц.м.} , МеВ	V ₀ , MeB	<i>r_V</i> , фм	<i>а</i> _V , фм	W _s , MeB	<i>r</i> _W , фм	<i>а</i> _{<i>W</i>} , фм	<i>J</i> _V / <i>J</i> _W , МеВ фм ³	<i>R_V/R_W</i> , фм	Літ.
${}^{13}C + {}^{11}B$	24,38	256,7	0,788	0,740	7,0	1,250	0,740	499/45	3,9/5,2	[3]
${}^{13}C + {}^{11}B$	27,08	242,0	0,788	0,740	7,0	1,250	0,740	470/45	3,9/5,2	
$^{17}O + ^{7}Li$	22,07	154,0	0,804	0,740	14,0	1,000	0,600	360/52	3,9/4,1	
$^{17}O_{0,87} + ^{7}Li$	21,59	154,0	0,804	0,740	8,0	1,000	0,600	360/30	3,9/4,1	
$^{17}O_{3,05} + ^{7}Li$	18,23	154,0	0,804	0,740	6,0	1,000	0,600	360/22	3,9/4,1	
$^{7}\text{Li} + {}^{17}\text{O}$	27,71	183,0	0,800	0,740	6,0	1,450	0,740	422/65	3,9/5,7	[2]
$^{7}\text{Li} + {}^{18}\text{O}$	31,92	174,5	0,806	0,900	13,0	1,470	0,900	453/151	4,4/6,2	[6]
$^{7}\text{Li} + {}^{16}\text{O}$	29,22	175,1	0,802	0,700	16,0	1,200	0,700	407/105	3,8/4,9	[7]
${}^{8}\text{Li} + {}^{17}\text{O}$	25,91	174,5	0,800	0,900	5,0	1,250	0,900	420/38	4,4/5,5	[8]

Таблиця 1. Параметри потенціалів взаємодії ядер

Спектроскопічні амплітуди S_x нуклонів і кластерів x у системах A = C + x обчислювалися в рамках трансляційно-інваріантної моделі оболонок (ТІМО) [11] за допомогою програми DESNA [12, 13] із використанням таблиць хвильових функцій ядер 1р-оболонки [14]. Значення амплітуд S_x подано в табл. 2.

A	С	x	nL_j	S_x	A	С	x	nLj	S_x
⁸ Li	⁷ Li	n	$1P_{1/2}$	0,478	$^{17}O_{0,87}$	¹³ C	α	$3P_1$	-0,810 ^(a)
⁸ Li	⁷ Li _{0,47}	n	$1P_{3/2}$	0,478	$^{17}O_{3,05}$	¹³ C	α	$4S_0$	-0,810
⁸ Be	⁷ Li	р	$1P_{3/2}$	1,234 ^(a)	¹⁷ O _{3,84}	¹³ C	α	$3D_2$	-0,468
⁸ Be	⁷ Li _{0,47}	р	$1P_{1/2}$	0,873 ^(a)	$^{17}O_{4,55}$	¹³ C	α	$3D_2$	-0,536
⁹ Be	⁷ Li	d	$2S_1$	-0,226 ^(a)	$^{17}O_{6,35}$	¹³ C	α	$4P_1$	-0,810 ^(a)
			$1D_1$	0,111 ^(a)	¹⁷ O	^{14}C	³ He	$2D_{5/2}$	-0,577
			$1D_{3}$	-0,624 ^(a)	$^{17}O_{0,87}$	^{14}C	³ He	$3S_{1/2}$	-0,236
⁹ Be	⁷ Li _{0,47}	d	$2S_1$	0,202	$^{17}O_{3,05}$	^{14}C	³ He	$3P_{1/2}$	-0,236
			$1D_1$	0,124	$^{17}O_{3,84}$	^{14}C	³ He	$2F_{5/2}$	-0,577
			$1D_2$	-0,373 ^(a)	$^{17}O_{4,55}$	^{14}C	³ He	3P _{3/2}	-0,236
¹⁰ Be	⁷ Li	t	$2P_{3/2}$	0,392 ^(a)	$^{17}O_{6,35}$	^{14}C	³ He	$4S_{1/2}$	-0,236
¹⁰ Be	⁷ Li _{0,47}	t	$2P_{1/2}$	0,277 ^(a)	17 O	^{14}N	t	$2D_{3/2}$	-0,432
^{10}B	⁷ Li	³ He	$2P_{3/2}$	0,420				$1G_{7/2}$	-0,052 ^(a)
			$1F_{5/2}$	0,104 ^(a)	$^{17}O_{0,87}$	^{14}N	t	$3S_{1/2}$	-0,473 ^(a)
			$1F_{7/2}$	0,347				$2D_{3/2}$	0,167
${}^{10}B$	⁷ Li _{0,47}	³ He	$1F_{5/2}$	0,104 ^(a)	$^{17}O_{3,05}$	^{14}N	t	$3P_{1/2}$	$-0,473^{(a)}$
			$1F_{7/2}$	0,347				$3P_{3/2}$	0,167
${}^{11}B$	¹⁰ Be	р	$1F_{5/2}$	-0,058	$^{17}O_{3,84}$	^{14}N	t	$3P_{3/2}$	-0,432
			$1F_{7/2}$	0,400 ^(a)				$2F_{5/2}$	0,093 ^(a)
			$1P_{3/2}$	0,699				$2F_{7/2}$	-0,052
${}^{11}B$	⁷ Li	α	$3S_0$	-0,638	$^{17}O_{4,55}$	^{14}N	t	$3P_{1/2}$	-0,118
			$2D_2$	-0,422				$3P_{3/2}$	0,106 ^(a)
${}^{11}B$	$^{7}\text{Li}_{0,47}$	α	$2D_2$	$-0,422^{(a)}$				$2F_{5/2}$	-0,324
${}^{11}B$	⁸ Li	³ He	$2P_{1/2}$	0,160 ^(a)	$^{17}O_{6,35}$	^{14}N	t	$3S_{1/2}$	-0,473 ^(a)
			$1F_{5/2}$	0,218 ^(a)				$2D_{3/2}$	0,167
			$1F_{7/2}$	0,214	¹⁷ O	¹⁵ N	d	$2P_2$	-0,552
${}^{11}B$	⁸ Be	t	$2P_{3/2}$	0,641	$^{17}O_{0,87}$	¹⁵ N	d	$2P_0$	-0,497
¹¹ B	⁹ Be	d	$2S_1$	-0,607 ^(a)	$^{17}O_{3,05}$	¹⁵ N	d	$3S_1$	0,101 ^(a)
			$1D_1$	-0,109 ^(a)				$2D_1$	-0,497 ^(a)
			$1D_{3}$	0,610 ^(a)	$^{17}O_{3,84}$	¹⁵ N	d	$2D_2$	-0,276
${}^{11}B$	^{10}B	n	$1P_{3/2}$	$-1,347^{(a)}$				$2D_3$	-0,074 ^(a)
¹³ C	¹⁰ Be	³ He	$2P_{1/2}$	0,170	$^{17}O_{4,55}$	¹⁵ N	d	$3S_1$	0,202
¹³ C	$^{10}\mathbf{B}$	t	$1F_{5/2}$	$0,108^{(a)}$				$2D_1$	0,124 ^(a)
			$1F_{7/2}$	0,747	15	17		$2D_2$	$-0,373^{(a)}$
¹⁴ C	¹¹ B	t	$2P_{3/2}$	$-0,368^{(a)}$	¹⁷ O _{6,35}	¹⁵ N	d	$2P_0$	0,101
¹⁴ C	¹³ C	n	$1P_{1/2}$	$-1,094^{(a)}$	170	¹⁶ N	р	$1P_{1/2}$	-0,512
^{14}N	¹¹ B	³ He	$2P_{1/2}$	$-0,107^{(a)}$	15			$1P_{3/2}$	0,137
			$2P_{3/2}$	-0,096	¹⁷ O _{0,87}	¹⁶ N	р	$1P_{3/2}$	$-0,530^{(a)}$
14	10		$1F_{5/2}$	$-0,292^{(a)}$	¹⁷ O _{3,05}	¹⁶ N	р	$1D_{3/2}$	0,500
¹⁴ N	¹³ C	р	$1P_{1/2}$	0,461	¹⁷ O _{3,84}	¹⁶ N	р	$2S_{1/2}$	0,509
152 -	12 ~		$1P_{3/2}$	0,163 ^(a)	¹⁷ O _{4,55}	¹⁶ N	р	$2S_{1/2}$	-0,375 ^(a)
¹⁵ N	¹³ C	d	$2S_1$	0,248 ^(a)	¹⁷ O _{6,35}	¹⁶ N	р	$1P_{3/2}$	-1,060
161 -	12 ~		$1D_1$	0,444(a)	170	100	n	$1D_{5/2}$	0,500
¹⁰ N	¹³ C	t 2==	$2D_{3/2}$	-0,348	¹⁷ O _{0,87}	100	n	$2S_{1/2}$	0,866
¹⁰ O	¹⁵ C	°Не	$2P_{1/2}$	0,910 ^(a)	$^{1}O_{3,05}$	0 ⁰¹	n	$2P_{1/2}$	-1,118
¹⁷ O	¹³ C	α	$2F_3$	$-0,468^{(a)}$					

Таблиця 2. Спектроскопічні амплітуди нуклонів і кластерів *x* у системах *A* = *C* + *x*

^(a) $S_{FRESCO} = (-1)^{J_C + j - J_A} \cdot S_x = -S_x.$

Параметри дійсної частини потенціалу WS для вихідного каналу ${}^{7}Li + {}^{17}O$ реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ було отримано методом підгонки до потенціалу DF взаємодії ядер ${}^{7}Li + {}^{17}O$. Дійсні та уявні частини потенціалів WS та DF показано на рис. 5. Параметри уявних частин цих потенціалів отримано з підгонки M3KP-перерізів реакції $^{13}C(^{11}B, ^{7}Li)^{17}O$ до експериментальних даних реакції.

Кутові розподіли експериментальних даних реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ для основних станів ядер ${}^{7}Li i {}^{17}O$ та відповідні МЗКР-розрахунки для реакцій передач, діаграми яких показано на рис. 4, представлено на рис. 6 і 7 для МЗКР-розрахунків

Рис. 5. Дійсні та уявні частини потенціалів WS (штрихові криві) та DF (суцільні криві) взаємодії ядер ⁷Li + ¹⁷O.

Рис. 6. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ МеВ для основних станів ядер ${}^{7}Li i {}^{17}O$. Криві – МЗКР-розрахунки з потенціалом DF з $W_{DF} = 0,14V_{DF}$ для різних механізмів реакції.

На рис. 8 і 9 показано диференціальні перерізи реакції ¹³C(¹¹B, ⁷Li)¹⁷O при енергії $E_{лаб}(^{11}B) =$ = 45 MeB для збуджених станів 0,478 MeB (1/2⁻) ядра ⁷Li та 0,871 MeB (1/2⁺), 3,055 MeB (1/2⁻) та 3,841 MeB (5/2⁻) ядра ¹⁷O, а для збуджених станів 4,553 MeB (3/2⁻) та 6,356 MeB (1/2⁺) ядра ¹⁷O - на рис. 10. Кривими показано M3KP-розрахунки для передачі α-кластерів із використанням потенціалів WS (штрихові криві) та DF (k = 0,14, суцільні криві).

На рис. 11 показано порівняння МЗКР-перерізів для основного процесу – передачі α-частинки з використанням різних параметрів потенціаіз використанням потенціалів

$$U_{DF}(r) = V_{DF}(r) + iW_{DF}(r) = V_{DF}(r) + i0,14V_{DF}(r)$$

та WS, параметри якого подано в табл. 1.

На рис. 6 і 7 видно, що передача α-кластера (криві $<\alpha - i0,14>$ і $<\alpha>$) домінує в реакції $^{13}C(^{11}B, ^{7}Li)^{17}O.$ Внески двоступінчастих передач $n + {}^{3}$ Не і 3 Не + n (криві < n^{3} Не>, когерентні суми), d + d (криві <dd>), p + t i t + p (криві <pt>), $\alpha + d$ i $d + \alpha$ (криві < αd >), $t + {}^{3}$ He i 3 He + t (криві < t^{3} He>) та передача кластера ⁶Li (кривi <⁶Li >) у перерізи даної реакції незначні. На рис. 6 показано також МЗКР-розрахунки передачі α-кластера при використанні потенціалу DF з уявною частиною $W_{\rm DF} = 0.6V_{\rm DF}$, яка використовувася в роботі [16] для взаємодії ядер. Видно, що при коефіцієнті k = 0.6 уявної частини потенціалу DF взаємодії ядер 7 Li + 17 O M3КР-перерізи передачі α -кластера значно відрізняються від експериментальних даних реакції ¹³С(¹¹В, ⁷Li)¹⁷О.

Рис. 7. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ МеВ для основних станів ядер ${}^{7}Li$ і ${}^{17}O$. Криві – МЗКР-розрахунки з потенціалом WS (див. табл. 1) для різних механізмів реакції.

лу для вихідного каналу ⁷Li + ¹⁷О в реакції ¹³C(¹¹B, ⁷Li)¹⁷О при енергії $E_{лаб}(^{11}B) = 45$ МеВ для переходів в основні стани ядер ⁷Li i ¹⁷О: відповідними штриховими кривими показано розрахунки з параметрами потенціалів для систем ⁷Li + ¹⁸O [6], ⁷Li + ¹⁶O [7] та ⁸Li + ¹⁷O [8]. Як видно, суцільна крива < α >, що відповідає розрахункам із параметрами потенціалу ⁷Li + ¹⁷O з цієї роботи, найкращим чином описує експериментальні дані в повному кутовому діапазоні, що вказує на чутливість розрахунків до вибору параметрів потенціалу для вихідного каналу в реакції ¹³C(¹¹B, ⁷Li)¹⁷O (ізотопічні ефекти).

Рис. 8. Диференціальні перерізи реакції ¹³С(¹¹В, ⁷Li)¹⁷О при енергії $E_{ла6}(^{11}B) = 45$ МеВ для збуджених станів 0,478 МеВ (1/2⁻) ядра ⁷Li та 0,871 МеВ (1/2⁺) ядра ¹⁷О. Криві $< \alpha - i0.6 >$, $<\alpha >$ та Σ_{2ST} – ті самі, що на рис. 6 та 7 відповідно.

dσ/dΩ, мб/ср 1111111111 ¹³C(¹¹B,⁷Li)¹⁷O 1 $E_{\pi a 6.}(^{11}B) = 45 \text{ MeB}$ $1^{17}0^{*}$ – 3.055 MeB (1/2⁻) 10 (α) 10 10^{-3} $\langle \alpha - i0.6 \rangle$ Σ_{2ST} 10 1 170° 3.841 MeB (5/2⁻) 10 10⁻² $\langle \alpha \rangle$ $-i0.6\rangle$ 10^{-3} $\Sigma_{2S'}$ 10^{-4} 1111111 0 30 60 90 120 150 180 ^{0°}с.ц.<u>м</u>

Рис. 9. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при енергії $E_{\pi a \delta}({}^{11}B) = 45$ МеВ для збуджених станів 3,055 МеВ (1/2⁻) та 3,841 МеВ (5/2⁻) ядра ${}^{17}O$. Криві – ті самі процеси, що і на рис. 8.

Рис. 10. Диференціальні перерізи реакції ¹³С(¹¹В, ⁷Li)¹⁷О при енергії $E_{\pi a \bar{b}}(^{11}B) = 45$ МеВ для збуджених станів 4,554 МеВ (3/2⁻) та 6,356 МеВ (1/2⁺) ядра ¹⁷О. Криві – ті самі процеси, що й на рис. 8.

Рис. 11. Диференціальні перерізи реакції ¹³С(¹¹В, ⁷Li)¹⁷О при енергії $E_{\pi a 6}$ (¹¹В) = 45 МеВ для переходів в основні стани ядер ⁷Li та ¹⁷О. Криві – розрахунки для передачі α -частинки з різними потенціалами для каналу ⁷Li + ¹⁷O (див. текст).

Рис. 12. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при енергії $E_{\pi a 6}({}^{11}B) = 50$ MeB [5] для збуджених станів 3,055 MeB (1/2⁻), 3,841 MeB (5/2⁻), 4,554 MeB (3/2⁻) та 6,356 MeB (1/2⁺) ядра ${}^{17}O$. Криві – розрахунки з потенціалами WS при енергії 45 MeB (суцільна крива) та 50 MeB [5] (штрихова крива).

Для перевірки того, наскільки добре було підібрано потенціал для системи ⁷Li + ¹⁷O в даній роботі, нами було проаналізовано експериментальні дані з реакції ¹³C(¹¹B, ⁷Li)¹⁷O при близькій енергії $E_{na6}(^{11}B) = 50$ MeB, опубліковані в роботі [5] для збуджених станів 3,055 MeB (1/2⁻), 3,841 MeB (5/2⁻), 4,553 MeB (3/2⁻) та 6,356 MeB (1/2⁺) ядра ¹⁷O: на рис. 12 штриховими кривими показано розрахунки для передачі α -кластера, зроблені авторами роботи [5], суцільними кривими – наші розрахунки з параметрами потенціалів WS для вхідного і вихідного каналів, поданих у табл. 1, а також значеннями розрахованих у ТІМО спектроскопічних амплітуд згідно з табл. 2 (для стану 6,356 MeB (1/2⁺) ядра ¹⁷O було використано

- 1. S.Yu. Mezhevych et al. Cluster structure of ¹⁷O. Phys. Rev. C 95 (2017) 034607.
- 2. A.T. Rudchik et al. ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ reaction and comparison of ${}^{6,7}\text{Li} + {}^{16,17,18}\text{O}$ potentials. Nucl. Phys. A 927 (2014) 209.
- 3. S.Yu. Mezhevych et al. The ${}^{13}C + {}^{11}B$ elastic and inelastic scattering and isotopic effects in the ${}^{12,13}C + {}^{11}B$ scattering. Nucl. Phys. A 724 (2003) 29.
- 4. M. Kowalczyk. SMAN: a Code for Nuclear Experiments. Warsaw University report (1998).
- 5. B. Guo et al. New determination of the ${}^{13}C(\alpha, n){}^{16}O$ reaction rate and its influence on the s-process nucleosynthesis in AGB stars. The Astrophysical J. 756(2) (2012) 193.
- 6. A.A. Rudchik et al. Elastic and inelastic scattering of

радіус потенціалу зв'язку для системи ${}^{13}C + \alpha$, як у роботі [5]). Видно задовільне узгодження МЗКРрозрахунків з експериментальними даними.

4. Основні результати та висновки

Експериментальні дані диференціальних перерізів реакції ¹³С(¹¹В, ⁷Li)¹⁷О при енергії $E_{\pi a 6}$ (¹¹В) = 45 МеВ для основних станів ядер ⁷Li i ¹⁷О та збуджень станів 0,478 МеВ ядра ⁷Li i 0,871 - 6,356 МеВ ядра ¹⁷О [1] проаналізовано за МЗКР. У схему зв'язку включалися канали пружного і непружного розсіяння ядер ¹¹В + ¹³С та одно- і двоступінчасті реакції передач, частина яких не досліджувалася в роботі [1]. У МЗКР-розрахунках використано потенціали WS для вхідного каналу ⁷Li + ¹⁷О – потенціали WS і DF. Визначено набори параметрів цих потенціалів. Обчислено спектроскопічні амплітуди переданих у реакції нуклонів і кластерів у рамках ТІМО.

Установлено, що двоступінчасті процеси, як і передача кластера ⁶Li [1], не дають вагомого внеску в диференціальні перерерізи реакції ¹³C(¹¹B, ⁷Li)¹⁷O при енергії $E_{\text{лаб}}(^{11}B) = 45$ MeB. Основним процесом є передача α-частинки.

Проаналізовано також експериментальні дані реакції ¹³С(¹¹В, ⁷Li)¹⁷О при енергії $E_{\text{лаб}}(^{11}\text{B}) = 50$ МеВ. Порівнюються МЗКР-розрахунки перерізів даної реакції при наборах параметрів потенціалів WS даної роботи та з роботи [5].

Порівнюються МЗКР-перерізи реакції ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при використанні у вихідному каналі параметрів потенціалів взаємодії ядер ${}^{7}Li + {}^{17}O, {}^{7}Li + {}^{18}O$ [6], ${}^{7}Li + {}^{16}O$ [7] та ${}^{8}Li + {}^{17}O$ [8], які в основному відрізняються значеннями параметрів a_V , a_W та r_W , що може бути пов'язано з відмінністю нейтронного «гало» в цих ядрах. Виявлено помітні відмінності (*ізотопічні ефекти*) МЗКР-перерізів даної реакції.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

 7 Li + 18 O versus 7 Li + 16 O. Nucl. Phys. A 785 (2007) 293.

- 7. A.T. Rudchik et al. Tensor analyzing powers and energy dependence of the $^{7}Li + {}^{16}O$ interaction. Phys. Rev. C 75 (2007) 024612.
- A.T. Rudchik et al. ⁸Li optical potential from ⁷Li(¹⁸O, ¹⁷O)⁸Li reaction analysis. Nucl. Phys. A 831 (2009) 139.
- J. Cook. DFPOT: A program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.
- H. De Vries, C. W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.

- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- А.Н. Бояркина. Структура ядер 1р-оболочки (М.: Изд-во Москов. ун-та, 1973) 62 с.
- А.Т. Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). Препринт Ин-та ядерных исслед. АН УССР. КИЯИ-82-12 (Киев, 1982) 27 с.
- А.Т. Рудчик, Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач. УФЖ 30(6) (1985) 819.
- I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 16. D. Pereira et al. An imaginary potential with universal normalization for dissipative processes in heavyion reactions. Phys. Lett. B 670(4-5) (2009) 330.

С. Ю. Межевич¹, А. Т. Рудчик^{1,*}, К. Русек², К. В. Кемпер³, А. А. Рудчик¹, О. А. Понкратенко¹, С. Б. Сакута⁴

¹ Институт ядерных исследований НАН Украины, Киев, Украина ² Лаборатория тяжелых ионов Варшавского университета, Варшава, Польша ³ Физический факультет, Национальный университет Флориды, Таллахасси, США ⁴ Национальный исследовательский центр «Курчатовский институт», Москва, Россия

*Ответственный автор: rudchik@kinr.kiev.ua

МЕХАНИЗМЫ РЕАКЦИИ ¹³С(¹¹В, ⁷Li)¹⁷О ПРИ ЭНЕРГИИ ИОНОВ ¹¹В 45 МэВ

Исследована реакция ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при энергии $E_{na6}({}^{11}B) = 45$ МэВ для основных и возбужденных состояний ядер ${}^{7}Li$ и ${}^{17}O$. Анализ экспериментальных данных проведен по методу связанных каналов реакций (МСКР). В схему связи включались каналы упругого и неупругого рассеяния ядер ${}^{13}C + {}^{11}B$ и одно- и двухступенчатые передачи нуклонов и кластеров с выходом ядер ${}^{7}Li + {}^{17}O$. Необходимые для МСКР-расчетов спектроскопические амплитуды нуклонов и кластеров рассчитаны в рамках трансляционно-инвариантной модели оболочек (ТИМО). Для входящего канала реакции использовался потенциал Вудса - Саксона (WS), параметры которого были получены из МСКР-анализа экспериментальных данных упругого рассеяния ядер ${}^{11}B + {}^{13}C$, а для исходящего канала ${}^{7}Li + {}^{17}O$ потенциал WS и фолдинг-потенциал (DF) взаимодействия ядер ${}^{7}Li + {}^{17}O$ с мнимой частью, параметры которой получены из подгонки МСКР-сечений реакции ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ к экспериментальным данным. Таким же методом определены также параметры мнимой части и потенциала WS. Параметры действительной части этого потенциала получены путем подгонки к периферийной области потенциала DF. Обнаружены изотопические отличия сечений реакции ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ при использовании потенциалов взаимодействия ядер ${}^{7}Li + {}^{16}O$ и ${}^{7}Li + {}^{18}O$ в исходящем канале реакции.

Ключевые слова: ядерные реакции, оптическая модель, метод связанных каналов реакций, фолдинг-модель, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.

S. Yu. Mezhevych¹, A. T. Rudchik^{1,*}, K. Rusek², K. W. Kemper³, A. A. Rudchik¹, O. A. Ponkratenko¹, S. B. Sakuta⁴

¹Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

² Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

³ Physics Department, Florida State University, Tallahassee, USA

⁴ National Research Center «Kurchatov Institute», Moscow, Russia

*Corresponding author: rudchik@kinr.kiev.ua

MECHANISMS OF ¹³C(¹¹B, ⁷Li)¹⁷O REACTION AT THE ¹¹B ION ENERGY 45 MeV

Reaction ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ at the energy $E_{lab}({}^{11}B) = 45$ MeV for the ground and excited states of the ${}^{7}Li$ and ${}^{17}O$ nuclei was studied. The reaction experimental data were analyzed within the coupled-reaction-channels method (CRC). The ${}^{13}C + {}^{11}B$ elastic scattering channel and one- and two-step reactions transferring nucleons and clusters were included in the coupling scheme. The spectroscopic amplitudes of nucleons and clusters needed for the CRC-calculations were computed within the translationally invariant shell model (TISM). The Woods-Saxon (WS) potential was used for the entrance reaction channel with the parameters deduced from the CRC-analysis of the ${}^{11}B + {}^{13}C$ elastic scattering experimental data when the potential WS and the folding-potential (DF) with imaginary part, parameters of which were deduced from the fitting of the CRC cross sections to the ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ reaction experimental data, were used for the exit ${}^{7}Li + {}^{17}O$ reaction channel. The parameters of the imaginary WS-potential were deduced in the same way. The parameters of the real part of this potential were obtained by fitting it to the peripheral region of the DF-potential. Isotopic differences of the ${}^{13}C({}^{11}B, {}^{7}Li){}^{17}O$ reaction cross sections using the parameters of ${}^{7}Li + {}^{17}O, {}^{7}Li + {}^{16}O$ and ${}^{7}Li + {}^{18}O$ interaction for the exit reaction channel were observed.

Keywords: nuclear reactions, optical model, coupled-reaction-channels method, folding-model, spectroscopic amplitudes, optical potentials, reaction mechanisms.

REFERENCES

- S.Yu. Mezhevych et al. Cluster structure of ¹⁷O. Phys. Rev. C 95 (2017) 034607.
- 2. A.T. Rudchik et al. ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ reaction and comparison of ${}^{6,7}\text{Li} + {}^{16,17,18}\text{O}$ potentials. Nucl. Phys. A 927 (2014) 209.
- 3. S.Yu. Mezhevych et al. The ${}^{13}C + {}^{11}B$ elastic and inelastic scattering and isotopic effects in the ${}^{12,13}C + {}^{11}B$ scattering. Nucl. Phys. A 724 (2003) 29.
- 4. M. Kowalczyk. SMAN: a Code for Nuclear Experiments. Warsaw University report (1998).
- 5. B. Guo et al. New determination of the ${}^{13}C(\alpha, n){}^{16}O$ reaction rate and its influence on the s-process nucleosynthesis in AGB stars. The Astrophysical J. 756(2) (2012) 193.
- A.A. Rudchik et al. Elastic and inelastic scattering of ⁷Li + ¹⁸O versus ⁷Li + ¹⁶O. Nucl. Phys. A 785 (2007) 293.
- 7. A.T. Rudchik et al. Tensor analyzing powers and energy dependence of the $^{7}Li + {}^{16}O$ interaction. Phys. Rev. C 75 (2007) 024612.
- A.T. Rudchik et al. ⁸Li optical potential from ⁷Li(¹⁸O, ¹⁷O) ⁸Li reaction analysis. Nucl. Phys. A 831 (2009) 139.
- J. Cook. DFPOT: A program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.

- H. De Vries, C. W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 12. N. Boyarkina. *The Structure of the 1p-Shell Nuclei* (Moskva: Moscow University, 1973) 62 p. (Rus)
- A.T. Rudchik, Yu.M. Chuvil'skij. Calculation of spectroscopic amplitudes for arbitrary associations of nucleons in nuclei 1p-shell (program DESNA). Preprint Institute for Nucl. Res. AS USSR. KINR-82-12 (Kyiv, 1982) 27 p. (Rus)
- A.T. Rudchik, Yu.M. Chuvil'skij. Spectroscopic amplitudes of multi-nucleon clusters in 1p-shell nuclei and analysis of reactions of multi-nucleon transmissions. Ukr. Fiz. Zhurnal 30(6) (1985) 819. (Rus)
- I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 16. D. Pereira et al. An imaginary potential with universal normalization for dissipative processes in heavyion reactions. Phys. Lett. B 670(4-5) (2009) 330.

Надійшла 24.09.2018 Received 24.09.2018