ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.171/539.172

https://doi.org/10.15407/jnpae2019.03.221

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. Е. Куцик¹, К. Русек², К. В. Кемпер³, Е. П'ясецкі², А. Столяж², А. Тщіньска², Вал. М. Пірнак¹, О. А. Понкратенко¹, І. Строєк⁴, Є. І. Кощий⁵, Р. Сюдак⁶, С. Б. Сакута⁷, В. А. Плюйко⁸, А. П. Ільїн¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

> ¹ Інститут ядерних досліджень НАН України, Київ, Україна ² Лабораторія важких іонів Варшавського університету, Варшава, Польща ³ Відділ фізики, Флоридський державний університет, Таллахасі, США ⁴ Національний центр ядерних досліджень, Варшава, Польша

⁵ Циклотронний інститут Техаського А&М університету, Техас, США

⁶ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща

⁷ Національний дослідницький центр «Інститут Курчатова», Москва, Росія

⁸ Київський національний університет імені Тараса Шевченка, Київ, Україна

*Відповідальний автор: rudchik@kinr.kiev.ua

МЕХАНІЗМИ РЕАКЦІЇ ¹²С(¹⁵N, ¹⁴С)¹³N ПРИ ЕНЕРГІЇ 81 МеВ ТА ВЗАЄМОДІЯ ЯДЕР ¹⁴С + ¹³N

Досліджено реакцію ¹²C(¹⁵N, ¹⁴C)¹³N при енергії $E_{na6}(^{15}N) = 81$ MeB для основних та збуджених станів ядер ¹⁴C і ¹³N. Отримано нові дані диференціальних перерізів реакції. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій (МЗКР). Пружне розсіяння ядер ¹⁵N + ¹²C та найбільш імовірні реакції передач нуклонів і кластерів було включено в схему зв'язку каналів. У МЗКР-розрахунках використовувались потенціали Вудса - Саксона (WS) взаємодії ядер ¹⁵N + ¹²C для вхідного каналу реакції та взаємодії ядер ¹⁴C + ¹³N для вихідних каналів реакції. Для вхідного каналу реакції використано WS потенціал, отриманий при аналізі експериментальних даних пружного ядер ¹⁵N + ¹²C, а потенціал WS для вихідного каналу ¹⁴C + ¹³N реакції отримано методом підгонки МЗКР-перерізів реакції ¹²C(¹⁵N, ¹⁴C)¹³N до експериментальних даних цієї реакції. У МЗКР-розрахунках перерізів цієї реакції використовувались спектроскопічні амплітуди нуклонів і кластерів в ядрах, які обчислювались за трансляційно-інваріантною моделлю Ір-оболонки. У результаті МЗКР-аналізу реакції отримано відомості про потенціал WS взаємодії ядер ¹⁴C + ¹³N та механізми передач нуклонів і кластерів. Установлено, що в даній реакції основну роль відіграють передачі протонів та 2n-кластерів. Досліджено відмінності МЗКР-перерізів реакції ¹²C(¹⁵N, ¹⁴C)¹³N при використанні в її вихідному каналі потенціалів взаємодії ядер ¹⁴C + ¹³N та механізми передач нуклонів і кластерів. Установлено, що в даній реакції основну роль відіграють передачі протонів та 2n-кластерів. Досліджено відмінності МЗКР-перерізів реакції ¹²C(¹⁵N, ¹⁴C)¹³N при використанні в її вихідному каналі потенціалів взаємодії ядер ¹⁴C + ¹³N і¹⁴C + ¹⁴N (ізотопічні ефекти).

Ключові слова: ядерна реакція ¹²С́(¹⁵N, ¹⁴C)¹³N при 81 МеВ, аналіз за методом зв'язаних каналів реакцій, спектроскопічні амплітуди нуклонів і кластерів, механізми реакції.

1. Вступ

Реакції взаємодії важких іонів з ядрами широко використовуються для отримання відомостей про потенціали взаємодії та структуру стабільних та нестабільних ядер в основних і збуджених станах. У даній роботі такі дослідження проведено, використовуючи реакцію ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81 \text{ MeB}$, для ядер ¹⁴С і ¹³N вихідного каналу реакції в основних та збуджених станах. Як засвідчили наші літературні пошуки, ця реакція раніше не досліджувалась. Вимірювання диференціальних перерізів цієї реакції проведено в експерименті одночасно з пружним і непружним розсіянням іонів ¹⁵N при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81 \text{ МеВ та комплексом реакцій}$ ${}^{12}C({}^{15}N, X)Y$ з виходом ядер X, Y iз Z = 3 - 8. Експериментальні дані реакції ¹²С(¹⁵N, ¹⁴C)¹³N досліджено за методом зв'язаних каналів реакцій (МЗКР), використовуючи потенціали Вудса - Саксона (WS) для вхідного й вихідного каналів реакції. Параметри потенціалу WS для вхідного каналу реакції отримано раніше при M3KP-аналізі експериментальних даних пружного й непружного розсіяння ядер $^{15}N + ^{12}C$ при енергії 81 МеВ [1, 2], а параметри потенціалу WS взаємодії ядер $^{14}C + ^{13}N$ визначено при M3KP-аналізі експериментальних даних реакції $^{12}C(^{15}N, ^{14}C)^{13}N$. При цьому в M3KP-розрахунках одно- й двоступінчастих передач нуклонів і кластерів у реакції використовувались спектроскопічні амплітуди нуклонів і кластерів, обчислені за трансляційно-інваріантною моделлю Ір-оболонки (ТІМО).

2. Методика експерименту

Вимірювання диференціальних перерізів реакцій ¹²C(¹⁵N, *X*)*Y* проведено на циклотроні U-200Р Лабораторії важких іонів Варшавського університету на експериментальній установці ICARE [3]

© А. Т. Рудчик, А. А. Рудчик, О. Е. Куцик, К. Русек, К. В. Кемпер, Е. П'ясецкі, А. Столяж, А. Тщіньска, Вал. М. Пірнак, О. А. Понкратенко, І. Строєк, Є. І. Кощий, Р. Сюдак,

С. Б. Сакута, В. А. Плюйко, А. П. Ільїн, Ю. М. Степаненко, В. В. Улещенко, Ю. О. Ширма, 2019

при енергії 81 МеВ пучка іонів ¹⁵N з використанням трьох ΔE -*E*-спектрометрів з кремнієвими ΔE - і *E*-детекторами та одного з газовим ΔE - і кремнієвим *E*-детекторами. У газовому детекторі використовувався стиснутий аргон. Розкид енергії іонів ¹⁵N на мішені не перевищував 0,5 %. В експерименті використовувалась самопідтримна мішень ¹²C товщиною ~ 0,5 мг/см².

Накопичення та збереження спектрометричної інформації забезпечували електронні методики ІСАRЕ та SMAN [4]. Система SMAN використовувалася також для спостереження реєстрації продуктів реакцій на дисплеї комп'ютера у вигляді $\Delta E(E)$ -спектрів. Електронна методика експерименту забезпечувала вимірювання $\Delta E(E)$ -спектрів продуктів реакцій ¹²C(¹⁵N, X)Y із зарядами Z = 3 - 8. Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹²C(¹⁵N, X)Y показано на рис. 1. Видно, що експериментальна методика забезпечувала розділення продуктів реакцій за зарядами та масами.

Типові енергетичні спектри ядер ¹⁴С і ¹³N, продуктів реакцій ¹²С(¹⁵N, ¹⁴C)¹³N і ¹²С(¹⁵N, ¹³N)¹⁴C, отримані з $\Delta E(E)$ -спектрів проектуванням локусів цих ядер на *E*-вісь, наведено на рис. 2:

a) спектр ¹⁴С з неперервним фоном (суцільна крива) від багаточастинкових реакцій;

б) спектр ¹⁴С після вилучення неперервного фону (криві – наближення експериментальних піків симетричними гауссіанами);

в) спектр ¹³N з неперервним фоном (суцільна крива) від багаточастинкових реакцій;

c) спектр ¹³N після вилучення неперервного фону (криві – гауссіани).

Рис. 2. Типові енергетичні спектри ¹⁴С і ¹³N - продуктів реакції ¹²С(¹⁵N, ¹⁴C)¹³N при енергії $E_{\pi a \delta}$ (¹⁵N) = 81 МеВ. Кривими показано наближення фонів від багаточастинкових реакцій (*a*, *в*) та наближення експериментальних піків симетричними гауссіанами (*б*, *г*).

Площі гауссіанів використовувалися для обчислення диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N.$ При цьому для кутів θ°_{с.ц.м.}(¹⁴C) < 90° використовувались енергетичні спектри ¹⁴C, а спектри ¹³N - для кутів $\theta^{\circ}_{c,\mu,M}({}^{14}C) =$ $= 180^{\circ} - \theta^{\circ}_{c \parallel M}$ (¹³N). Таким методом було отрирозподіли перерізів кутові мано реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ y повному кутовому діапазоні для основних та збуджених станів ядер 14 C і 13 N. Оскільки ядро ¹³N у збуджених станах розпадне, то перерізи реакції ¹²С(¹⁵N, ¹⁴С)¹³N для цих станів ядра ¹³N було поміряно лише при використанні спектрів ядер ¹⁴С.

Одержані експериментальні дані диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\pi a 6}({}^{15}N) = 81$ МеВ для основних та збуджених станів ядер ${}^{14}C$ і ${}^{13}N$ показано на рис. 3.

3. Аналіз експериментальних даних

Експериментальні дані диференціальних перерізів реакції ¹²C(¹⁵N, ¹⁴C)¹³N проаналізовано за МЗКР із включенням у схему зв'язку каналів пружного розсіяння ядер $^{15}N + ^{12}C$ та одно- й двоступінчастих реакцій передач нуклонів і кластерів, діаграми яких показано на рис. 4. МЗКР-розрахунки реакції проводились за допомогою програми FRESCO [5].

Рис. 4. Діаграми передач нуклонів та кластерів у реакції ¹²С(¹⁵N,¹⁴C)¹³N.

Необхідні для МЗКР-розрахунків перерізів реакції спектроскопічні амплітуди S_x нуклонів і кластерів x в ядрах A = C + x обчислювалися за ТІМО [6], використовуючи програму DESNA [7, 8]. Ці спектроскопічні амплітуди нуклонів і кластерів x, переданих у реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ згідно з діаграмами рис. 4, подано в табл. 1.

У МЗКР-розрахунках перерізів реакції використовувались потенціали WS

$$U(r) = -V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} - iW_s \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

для вхідного та вихідних каналів реакції.

Для вхідного каналу реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ використано параметри потенціалу WS взаємодії ядер ${}^{15}N + {}^{12}C$, отримані в роботі [1] при дослідженні пружного й непружного розсіяння іонів ${}^{15}N$ ядрами ${}^{12}C$ при енергії $E_{na6}({}^{15}N) = 81$ MeB. Для вихідного ж каналу реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ параметри потенціалу WS взаємодії ядер ${}^{14}C + {}^{13}N$ визначено методом підгонки МЗКР-розрахунків до експериментальних даних реакції. Ці параметри подано в табл. 2.

Таблиця 1. Спектроскопічні амплітуди нуклонів і кластерів x у системах A = C + x

Α	С	x	nL_J	S_x	Α	С	x	nL_J	S_x
^{12}C	¹¹ B	р	$1P_{3/2}$	$-1,706^{(a)}$	¹⁴ N	¹² C	d	$1D_1$	0,246
^{12}C	¹¹ C	n	$1P_{3/2}$	1,706 ^(a)	¹⁵ N	¹² C	t	$2P_{1/2}$	0,380
¹³ C	^{12}C	n	$1P_{1/2}$	0,601	¹⁵ N	¹³ C	d	$2S_1$	0,248 ^(a)
¹⁴ C	¹¹ B	t	$2P_{3/2}$	0,368 ^(a)				$1D_1$	0,444 ^(a)
^{14}C	^{12}C	² n	$2S_0$	0,615	¹⁵ N	¹⁴ C	р	$1P_{1/2}$	-0,598
$^{14}C^{*}_{6,09}$	^{12}C	² n	$1P_1$	0,615	¹⁵ N	$^{14}C^{*}_{6,09}$	р	$2S_{1/2}$	0,598

									1	
Α	С	х	nL_J	S_x		Α	С	х	nL _J	S_x
$^{14}C^{*}_{6,59}$	$^{12}\mathrm{C}$	² n	$2S_0$	0,615		¹⁵ N	$^{14}C^{*}_{6,59}$	р	$1P_{1/2}$	-0,598
$^{14}C^{*}_{6,90}$	$^{12}\mathrm{C}$	² n	$2S_0$	0,615		¹⁵ N	$^{14}\text{C}^{*}_{6,90}$	р	$1P_{1/2}$	-0,598
$^{14}C^{*}_{7,01}$	^{12}C	² n	$1D_2$	0,246		¹⁵ N	$^{14}C^{*}_{7,01}$	р	$1P_{3/2}$	1,336
$^{14}C^{*}_{7,34}$	^{12}C	² n	$1D_2$	0,246		¹⁵ N	$^{14}C^{*}_{7,34}$	р	$1P_{3/2}$	1,336
$^{14}\mathrm{C}$	^{13}C	n	$1P_{1/2}$	$-1,094^{(a)}$		¹⁵ N	¹³ N	² n	$2S_0$	0,608
^{13}N	¹¹ C	d	$2S_1$	0,203		¹⁵ N	$^{13}N_{2,36}^{*}$	² n	$2S_0$	-0,608
			$1D_1$	0,125		¹⁵ N	$^{13}N^{*}_{3,51}$	^{2}n	$1D_{2}$	-0,544
			$1D_2$	0,375 ^(a)		¹⁵ N	$^{13}N_{3,54}^{*}$	² n	$1D_2$	-0,246
^{13}N	$^{12}\mathrm{C}$	р	$1P_{1/2}$	0,601		¹⁵ N	^{14}N	n	$1P_{1/2}$	-1,091 ^(a)
$^{13}N_{2,36}^{*}$	$^{12}\mathrm{C}$	р	$2S_{1/2}$	0,601					$1P_{3/2}$	0,386
$^{13}N_{3,51}^{*}$	^{12}C	р	$1P_{3/2}$	0,601		^{16}N	^{14}C	d	$2P_2$	0,380
$^{13}N^{*}_{3,55}$	^{12}C	р	$1D_{5/2}$	0,101		¹⁶ N	¹⁵ N	n	$1D_{3/2}$	-0,270
14 N	¹³ N	n	$1P_{1/2}$	-0,461]	¹⁶ O	¹³ N	t	$2P_{1/2}$	-0,910 ^(a)
			$1P_{3/2}$	-0.163 ^(a)		^{16}O	¹⁵ N	р	$1P_{1/2}$	$-1.461^{(a)}$

^(a) $S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x.$

T ~ ^	-		• •	•••	
$\Gamma a \alpha m n g /$	19	пяметпи	ПОТЕНИІЯ ПІВ	взяємолії	ялер
L'aosiaqui 2.	114	pamerph	потенциянь	рэастоди	лдер

Ядра	<i>Е</i> _{с.ц.м.} , МеВ	V ₀ , MeB	<i>r</i> _V , фм	<i>а</i> _{<i>V</i>} , фм	W _s , MeB	<i>r</i> _W , фм	<i>а</i> _{<i>W</i>} , фм	Літ.
$^{15}N + ^{12}C$	36,0	195	0,790	0,750	8,0	1,250	0,750	[1]
${}^{14}C + {}^{13}N$	27,7	190	0,790	0,870	6,0	0,900	0,870	
${}^{14}C + {}^{14}N$	58,0	150	0,812	0,708	35,4	0,958	0,789	[9]

Експериментальні дані реакції ¹²С(¹⁵N, ¹⁴C)¹³N при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81 \text{ МеВ для основних ста$ нів ядер¹⁴С і ¹³N та відповідні МЗКР-розрахунки показано на рис. 5 для передач протонів (крива), 2п-кластерів (крива <2n>), двоступінчастих передач нейтронів n + n (крива <nn>), тритонів і протонів t + p і p + t (крива $\langle tp \rangle$) та дейтронів і нейтронів d + n і n + d (крива <dn>). Кривою Σ_{WS} показано когерентну суму МЗКРперерізів усіх процесів. Видно, що ця сума Σ_{WS} задовільно описує експериментальні дані реакції ¹²С(¹⁵N, ¹⁴С)¹³N. Передачі протонів і 2п-кластерів, як видно на рисунку, домінують у цій реакції. Передача протонів р домінує на малих кутах, а передача дінейтронів 2n - на великих кутах. Внески двоступінчастих процесів у перерізи реакції незначні.

На рис. 6 показано МЗКР-перерізи реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$, обчислені з використанням у вихідному каналі ${}^{14}C + {}^{13}N$ параметрів потенціалу WS взаємодії ядер ${}^{14}C + {}^{13}N$, отриманих у даній роботі (суцільна крива $\Sigma_{WS(1^3N + 1^4C)}$), та взаємодії ядер ${}^{14}C + {}^{14}N$ [9] (штрихова крива $\Sigma_{WS(1^4N + 1^4C)}$). Ці параметри подано в табл. 2. На цьому ж рисунку показано також МЗКР-перерізи реакції при використанні в її вихідному каналі оптичного фолдінг-потенціалу DF

$$U_{\rm DF}(r) = V_{\rm DF}(r) + ikV_{\rm DF}(r), \qquad (2)$$

при k = 0,1 для взаємодії ядер ¹⁴C + ¹⁴N (штрихова крива $\Sigma_{DF(}^{14}N_{+}^{14}C)$). Фолдінг-потенціал DF взаємо-

дії ядер ${}^{14}C + {}^{14}N$ обчислено за допомогою програми DFPOT [10] з використанням розподілів нуклонів в ядрах ${}^{14}C$ і ${}^{14}N$, поданих у роботі [11].

Продовження табл. 1

Рис. 5. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\pi a \delta}({}^{15}N) = 81$ МеВ для основних станів ядер ${}^{14}C$ і ${}^{13}N$. Криві – МЗКР-перерізи реакції передач нуклонів і кластерів (див. рис. 4).

На рис. 6 видно значні відмінності МЗКРперерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при використанні у вихідному каналі параметрів потенціалів WS взаємодії ядер ${}^{14}C + {}^{13}N$ та ${}^{14}C + {}^{14}N$. При використанні оптичного фолдінг-потенціалу DF (2) з k = 0,1 ці відмінності значно менші.

Рис. 6. Порівняння МЗКР-перерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$, обчислених з використанням в її вихідному каналі параметрів потенціалу WS для взаємодій ядер ${}^{14}C + {}^{13}N$ і ${}^{14}C + {}^{14}N$ [9] (суцільна крива $\Sigma_{WS}({}^{13}N + {}^{14}C)$ і штрихова крива $\Sigma_{WS}({}^{14}N + {}^{14}C)$ відповідно) та фолдінг-потенціалу DF взаємодії ядер ${}^{14}C + {}^{14}N$ (штрихова крива $\Sigma_{DF}({}^{14}N + {}^{14}C)$).

Експериментальні дані диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ та відповідні МЗКР-розрахунки для збуджених станів ядер ${}^{14}C$ і ${}^{13}N$ показано на рис. 7 - 9. На цих рисунках у кутових розподілах реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ із збудженим рівнем 2,365 МеВ (1/2⁺) ядра ${}^{13}N$ та збудженими рівнями 6,094 МеВ (1⁻) і 7,341 МеВ (2⁻) ядра ${}^{14}C$ штриховими кривими і <2n> показано МЗКР-перерізи реакції, обчислені для передач протонів р і дінейтронів 2n відповідно, а суцільними кривими Σ_{WS} – когерентні суми МЗКР-перерізів цих передач.

Рис. 7. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\pi a \bar{b}}({}^{15}N) = 81$ МеВ для збудженого стану 2,365 МеВ та нерозділених в експерименті станів 3,511 + 3,547 МеВ ядра ${}^{13}N$. Криві , <2n> і Σ_E – МЗКР-перерізи для передач протонів р і кластерів 2n та їхні суми.

Рис. 8. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\pi a 6}({}^{15}N) = 81$ МеВ для збудженого стану 6,094 МеВ та станів 6,589 + 6,728 МеВ ядра ${}^{14}C$. Криві – МЗКР-перерізи для передач протонів та 2n-кластерів (див. текст).

Рис. 9. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\pi a \bar{b}}({}^{15}N) = 81$ МеВ для збуджених станів 6,902 + 7,012 МеВ та 7,341 МеВ ядра ${}^{14}C$. Криві – МЗКР-перерізи для передач протонів та 2n-кластерів (див. текст).

Для нерозділених в експерименті збуджених рівнів *E*1 ядер ¹⁴С і ¹³N штриховими кривими Σ_{Ei} на рис. 7–9 показано когерентні суми МЗКР-перерізів реакції для передач протонів р і кластерів 2n, а суцільними кривими Σ_{E1+E2} – некогерентні суми МЗКР-перерізів Σ_{E1} та Σ_{E2} .

4. Основні результати та висновки

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при енергії $E_{\pi a \delta}({}^{15}N) = 81$ МеВ для основних та

збуджених станів 2,365 - 3,547 МеВ ядра ¹³N та збуджених станів 6,095 - 7,341 МеВ ядра ¹⁴C.

Експериментальні дані ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ проаналізовано за M3KP із включенням у схему зв'язку каналів пружного розсіяння ядер ${}^{15}N + {}^{12}C$ та каналів одно- і двоступінчастих передач нуклонів і кластерів 2n, d, t з утворенням ядер ${}^{14}C + {}^{13}N$ в основних і збуджених станах.

У МЗКР-розрахунках використовувались потенціали WS взаємодії ядер ¹⁵N + ¹²C для вхідного каналу реакції та взаємодії ядер ¹⁴C + ¹³N в основних і збуджених станах у вихідних каналах передач нуклонів і кластерів у реакції ¹²C(¹⁵N, ¹⁴C)¹³N. Для вхідного каналу реакції використано потенціал WS, параметри якого було отримано в роботах [1, 2] при дослідженні пружного й непружного розсіяння іонів ¹⁵N ядрами ¹²C при енергії $E_{лаб}(^{15}N) = 81$ MeB, а параметри потенціалу WS для вихідного каналу ¹⁴C + ¹³N реакції отримано в даній роботі методом підгонки MЗКР-перерізів реакції ¹²C(¹⁵N, ¹⁴C)¹³N до експериментальних даних.

- А.Т. Рудчик та ін. Пружне та непружне розсіяння іонів ¹⁵N ядрами ¹²С при енергії 81 МеВ. Ядерна фізика та енергетика 19 (2018) 210.
- A.T. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ¹²C at 81 MeV and the effect of transfer channels. Acta Phys. Polon. B 50 (2019) 733.
- 3. E. Piasecki et al. *Project ICARE at HIL* (Warsaw: Heavy Ion Laboratory, 2007) 38 p.
- M. Kowalczyk. SMAN: a Code for Nuclear Experiments. Warsaw University Report (1998).
- 5. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 6. Yu.F Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- А.Т. Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа

Спектроскопічні амплітуди нуклонів і кластерів, необхідні для МЗКР-розрахунків передач нуклонів і кластерів, обчислено за ТІМО.

Отримано відомості про роль одно- та двоступінчастих передач нуклонів і кластерів у даній реакції для основних та збуджених станів ядер ¹⁴С і ¹³N. Установлено, що в даній реакції основну роль відіграють передачі протона р та дінейтрона 2n. Внески двоступінчастих передач нуклонів і кластерів у перерізи реакції незначні.

Досліджено МЗКР-перерізи реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при використанні у вихідному каналі ${}^{14}C + {}^{13}N$ параметрів потенціалу WS і оптичного фолдінг-потенціалу DF взаємодії ядер ${}^{14}C + {}^{14}N$. При цьому виявлено значні відмінності МЗКР-перерізів реакції (ізотопічні ефекти).

Дана робота була профінансована за рахунок коштів наукового проекту «Дослідження структури нейтронно-надлишкових ядер 1р-оболонки у ядерних реакціях», що виконується відповідно до Цільової програми наукових досліджень НАН України «Фундаментальні дослідження з фізики високих енергій та ядерної фізики (міжнародна співпраця)» на 2018 - 2020 рр.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

DESNA). Препринт Ин-та ядерных исслед. АН УССР. КИЯИ-82-12 (Киев, 1982) 27 с.

- А.Т. Рудчик, Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач. УФЖ 30 (1985) 819.
- 9. A.T. Rudchik et al. Scattering, one-nucleon transfers and charge-exchange reactions in the ${}^{14}C + {}^{14}N$ interaction at $E({}^{14}N) = 116$ MeV. Nucl. Phys. A 589 (1995) 535.
- J. Cook. DFPOT: a program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.
- 11. H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, А. Е. Куцык¹, К. Русек², К. В. Кемпер³, Е. Пясецки², А. Столяж², А. Тщиньска², Вал. М. Пирнак¹, О. А. Понкратенко¹, И. Строек⁴, Е. И. Кощий⁵, Р. Сюдак⁶, С. Б. Сакута⁷, В. А. Плюйко⁸, А. П. Ильин¹, Ю. Н. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Институт ядерных исследований НАН Украины, Киев, Украина

² Лаборатория тяжелых ионов Варшавского университета, Варшава, Польша

³ Отдел физики, Флоридский государственный университет, Таллахасси, США

⁴ Национальный центр ядерных исследований, Варшава, Польша

⁵ Циклотронный институт Техасского А&М университета, Техас, США

⁶ Институт ядерной физики им. Г. Неводничаньского, Краков, Польша

⁷ Национальный исследовательский центр «Институт Курчатова», Москва, Россия

⁸ Киевский национальный университет имени Тараса Шевченко, Киев, Украина

*Ответственный автор: rudchik@kinr.kiev.ua

МЕХАНИЗМЫ РЕАКЦИИ ¹²С(¹⁵N, ¹⁴С)¹³N ПРИ ЭНЕРГИИ 81 МэВ И ВЗАИМОДЕЙСТВИЕ ЯДЕР ¹⁴С + ¹³N

Исследована реакция ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ при энергии $E_{na6}({}^{15}N) = 81$ МэВ для основных и возбужденных состояний ядер ${}^{14}C$ и ${}^{13}N$. Получены новые данные дифференциальных сечений реакции. Экспериментальные данные проанализированы по методу связанных каналов реакций (МСКР). Упругое рассеяние ядер ${}^{15}N + {}^{12}C$ и наиболее вероятные

реакции передач нуклонов и кластеров были включены в схему связи каналов. В МСКР-расчетах использовались потенциалы Вудса - Саксона (WS) взаимодействия ядер $^{15}N + ^{12}C$ для входного канала реакции и взаимодействия ядер $^{14}C + ^{13}N$ для выходных каналов реакции. Параметры потенциала WS для входного канала реакции раньше были получены при МСКР-анализе экспериментальных данных упругого и неупругого рассеяния ядер $^{15}N + ^{12}C$, а параметры потенциала WS для выходного канала реакции раньше были получены при МСКР-анализе экспериментальных данных упругого и неупругого рассеяния ядер $^{15}N + ^{12}C$, а параметры потенциала WS для выходного канала ¹⁴C + ^{13}N реакции получены в данной роботе методом подгонки МСКР-сечений реакции $^{12}C(^{15}N, ^{14}C)^{13}N$ к ее экспериментальным данным. В МСКР-расчетах сечений этой реакции использовались спектроскопические амплитуды нуклонов и кластеров в ядрах, которые вычислялись по трансляционно-инвариантной модели 1р-оболочки. В результате МСКР-анализа реакции получены сведения о потенциале WS взаимодействия ядер $^{14}C + ^{13}N$ и механизмы передач нуклонов и кластеров. Было установлено, что в данной реакции главную роль играют передачи протонов и 2n-кластеров. Были исследованы отличия МСКР-сечений реакции $^{12}C(^{15}N, ^{14}C)^{13}N$ при использовании в ее выходном канале потенциалов взаимодействия ядер $^{14}C + ^{13}N$ и $^{12}C(^{15}N, ^{14}C)^{13}N$ при использовании в ее выходном канале потенциалов взаимодействия ядер $^{14}C + ^{13}N$ и $^{14}C + ^{14}N$ (изотопические эффекты).

Ключевые слова: ядерная реакция ¹²C(¹⁵N, ¹⁴C)¹³N при 81 МэВ, анализ по методу связанных каналов реакций, спектроскопические амплитуды нуклонов и кластеров, механизмы реакции.

A. T. Rudchik^{1,*}, A. A. Rudchik¹, O. E. Kutsyk¹, K. Rusek², K. W. Kemper³, E. Piasecki², A. Stolarz², A. Trczińska², Val. M. Pirnak¹, O. A. Ponkratenko¹, I. Strojek⁴, E. I. Koshchiy⁵, R. Siudak⁶, S. B. Sakuta⁷, V. A. Plujko⁸, A. P. Ilyin¹, Yu. M. Stepanenko¹, V. V. Uleshchenko¹, Yu. O. Shyrma¹

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

² Heavy Ion Laboratory, Warsaw University, Warsaw, Poland

³ Physics Department, Florida State University, Tallahassee, USA

⁴National Institute for Nuclear Research, Warsaw, Poland

⁵ Cyclotron Institute, Texas A&M University, College Station, USA

⁶ H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland ⁷ Russian Research Centre "Kurchatov Institute", Moscow, Russia

⁸ Taras Schevchenko Kyiv National University, Kyiv, Ukraine

*Corresponding author: rudchik@kinr.kiev.ua

¹²C(¹⁵N, ¹⁴C)¹³N REACTION MECHANISMS AT ENERGY 81 MeV AND ¹⁴C + ¹³N NUCLEI INTERACTION

The ¹²C(¹⁵N, ¹⁴C)¹³N reaction at the energy $E_{lab}(^{15}N) = 81$ MeV for ground and excited states of ¹⁴C and ¹³N nuclei was investigated. New experimental data of the reaction cross-sections were obtained. The data were analyzed within the coupled reaction channels method (CRC). The ¹⁵N + ¹²C elastic scattering as well as the more important reactions of nucleon and cluster transfers were included in the channels-coupling scheme. In the CRC-calculations, the Woods - Saxon potentials (WS) were used for the interactions of ¹⁵N + ¹²C and ¹⁴C + ¹³N nuclei in the entrance and exit reaction channels. WS potential parameters for the reaction entrance channel were deduced previously from CRC-analysis of the ¹⁵N + ¹²C elastic and inelastic scattering data, then the WS potential parameters for the reaction exit channel were deduced from the fitting of ¹²C(¹⁵N, ¹⁴C)¹³N reaction data. The spectroscopic amplitudes of nucleons and clusters, used in the CRC-calculations, were computed within translational invariant shell model. As the results of the reaction CRC-analysis, the information about WS potential of ¹⁴C + ¹³N nuclei in this reaction. It was also studied the differences of the reaction CRC cross-sections calculated using the ¹⁴C + ¹³N i¹⁴C + ¹⁴N potentials in the reaction exit channel (isotopic effects).

Keywords: nuclear reaction ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ at 81 MeV, coupled reaction channels method, spectroscopic amplitudes of nucleons and clusters, reaction mechanisms.

REFERENCES

- A.T. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ¹²C at 81 MeV. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 19 (2018) 210. (Ukr).
- A.T. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ¹²C at 81 MeV and the effect of transfer channels. Acta Phys. Polon. B 50 (2019) 733.
- 3. E. Piasecki et al. *Project ICARE at HIL* (Warsaw: Heavy Ion Laboratory, 2007) 38 p.
- M. Kowalczyk. SMAN: a Code for Nuclear Experiments. Warsaw University report (1998).
- 5. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- A.T. Rudchik, Yu.M. Tchuvil'sky. Calculation of spectroscopic amplitudes for arbitrary associations of nucleons in 1p-shell nuclei (program DESNA). Preprint

of the Institute for Nucl. Res. AS UkrSSR. KINR-82-12 (Kyiv, 1982) 27 p. (Rus)

- A.T. Rudchik, Yu.M. Tchuvil'sky. Calculation of spectroscopic amplitudes of multi-nucleon clusters in 1p-shell nuclei and analysis of reactions of multinucleon transmissions. Ukr. J. Phys. 30(6) (1985) 819 (Rus).
- 9. A.T. Rudchik et al. Scattering, one-nucleon transfers and charge-exchange reactions in the ${}^{14}C + {}^{14}N$ interaction at $E({}^{14}N) = 116$ MeV. Nucl. Phys. A 589 (1995) 535.
- J. Cook. DFPOT: a program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.
- H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.

Надійшла 24.06.2019 Received 24.06.2019