ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.171/539.172

https://doi.org/10.15407/jnpae2019.04.366

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. О. Чепурнов¹, К. Русек², К. В. Кемпер³, Е. П'ясецкі², А. Столяж², А. Тщіньска², Вал. М. Пірнак¹, О. А. Понкратенко¹, І. Строєк⁴, Є. І. Кощий⁵, Р. Сюдак⁶, С. Б. Сакута⁷, А. П. Ільїн¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

 ¹ Інститут ядерних досліджень НАН України, Київ, Україна
 ² Лабораторія важких іонів Варшавського університету, Варшава, Польща ³ Відділ фізики, Флоридський державний університет, Таллахасі, США ⁴ Національний центр ядерних досліджень, Варшава, Польща
 ⁵ Циклотронний інститут Техаського А&М університету, Техас, США ⁶ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща
 ⁷ Національний дослідницький центр «Інститут Курчатова», Москва, Росія

*Відповідальний автор: rudchik@kinr.kiev.ua

ПРУЖНЕ ТА НЕПРУЖНЕ РОЗСІЯННЯ ІОНІВ ¹⁵N ЯДРАМИ ⁶Li ПРИ ЕНЕРГІЇ 81 МеВ

Поміряно диференціальні перерізи пружного та непружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії $E_{na6}(^{15}N) = 81$ MeB. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій (M3KP). Пружне та непружне розсіяння, процес переорієнтації спіну ядра ⁶Li та реакції передач нуклонів і кластерів включались у схему зв'язку каналів. У M3KP-розрахунках використовувався потенціал Вудса - Саксона (WS) та фолдінг-потенціал DF взаємодії ядер ¹⁵N + ⁶Li. Визначено параметри потенціалу WS, деформації ядер ⁶Li i ¹⁵N й отримано відомості про роль інших процесів у пружному та непружному розсіянні ядер ¹⁵N + ⁶Li. У M3KP-розрахунках реакцій передач використовувались спектроскопічні амплітуди нуклонів і кластерів, обчислені за трансляційно-інваріантною моделлю оболонок. Установлено, що в пружному розсіянні ядер ¹⁵N + ⁶Li основну роль відіграють потенціальне розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів у це розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів, обчислені за трансляційно-інваріантною моделлю оболонок. Установлено, що в пружному розсіянні ядер ¹⁵N + ⁶Li основну роль відіграють потенціальне розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів у це розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів у це розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів у це розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів у це розсіяння та процес переорієнтації спіну ядра ⁶Li. Внески реакцій передач нуклонів і кластерів у це розсіяння незначні. При порівнянні результатів досліджень пружних розсіянь ядер ¹⁵N + ⁶Li та ¹⁵N + ⁷Li при енергії *Е*_{лаб}(¹⁵N) = 81 МеВ виявлено помітні розбіжності як експериментальних даних, так і потенціалів взаємодії цих пар ядер (*ізотолічні ефекти*).

Ключові слова: ядерні реакції ⁶Li(¹⁵N, ¹⁵N), E = 81 MeB, ядерні спектри, $\sigma(\theta)$, механізми розсіяння ядер, параметри деформації ядер.

1. Вступ

Дослідження пружного та непружного розсіяння ядер важливе як для отримання інформації про взаємодію та збудження ядер, так і як вхідні канали ядерних реакцій передач з виходом стабільних і нестабільних ядер. Зокрема, результати дослідження розсіяння іонів ¹⁵N ядрами ⁶Li необхідні для вивчення реакцій передач ${}^{6}\text{Li}({}^{15}\text{N}, X)Y$ з виходом ядер ${}^{16}N + {}^{5}Li$, ${}^{13}N + {}^{8}Li$, ${}^{14}C + {}^{7}Be$, ¹³С + ⁸Ве тощо, експериментальна інформація для дослідження яких була вперше отримана одночасно з вимірюванням розсіяння ядер ¹⁵N + ⁶Li при енергії $E_{лаб}(^{15}N) = 81$ MeB. У літературі не знайдено жодної інформації про експериментальне дослідження розсіяння ядер ${}^{15}N + {}^{6}Li$, експериментальні дані розсіяння іонів ¹⁵N ядрами ⁶Li та іонів ⁶Li ядрами ¹⁵N відсутні в літературі при будь-якій енергії.

У даній роботі було поміряно диференціальні перерізи пружного та непружного розсіяння іонів ¹⁵N ядрами ⁶Li із збудженням ядер ¹⁵N до енергії 8,571 MeB та ядер ⁶Li до енергії 5,7 MeB. Експериментальні дані було проаналізовано за методом зв'язаних каналів реакцій (M3KP) із включенням у схему зв'язку каналів потенціального розсіяння ядер ¹⁵N + ⁶Li, процесу переорієнтації спіну ядра ⁶Li, каналів збудження ядер ¹⁵N і ⁶Li колективної природи (ротаційні та вібраційні переходи) та реакцій одно- й двоступінчастих передач нуклонів і кластерів з найбільшими внесками в пружне розсіяння цих ядер.

У роботі розсіяння ядер ¹⁵N + ⁶Li порівнюється з раніше дослідженим розсіянням ядер ¹⁵N + ⁷Li при енергії $E_{лаб}(^{15}N) = 81 \text{ MeB [1]}$. Виявлено відмінності як у взаємодії ядер ¹⁵N + ⁶Li i ¹⁵N + ⁷Li, так і в механізмах розсіяння цих ядер (*ізотопічні ефекти* розсіяння).

© А. Т. Рудчик, А. А. Рудчик, О. О. Чепурнов, К. Русек, К. В. Кемпер, Е. П'ясецкі, А. Столяж, А. Тщіньска, Вал. М. Пірнак, О. А. Понкратенко, І. Строєк, Є. І. Кощий, Р. Сюдак, С. Б. Сакута, А. П. Ільїн, Ю. М. Степаненко, В. В. Улещенко, Ю. О. Ширма, 2019

2. Методика експерименту

Диференціальні перерізи пружного та непружного розсіяння іонів ¹⁵N ядрами ⁶Li одночасно з реакціями ⁷Li(¹⁵N, X) поміряно на циклотроні С-200Р Лабораторії важких іонів Варшавського університету при енергії $E_{na6}(^{15}N) = 81$ МеВ. Для отримання пучка іонів ¹⁵N було використано збагачену ізотопом ¹⁵N кальцієву селітру (Ca(NO₃)₂). Розкид енергії іонів у пучку на мішені не перевищував 0,5 %.

В експерименті використовувалась самопідтримна мішень літію товщиною ~ 0,5 мг/см² з 80 % збагаченням ⁶Li.

Експеримент проводився на експериментальній установці ІСАRЕ [2]. Для реєстрації та ідентифікації продуктів ядерних процесів використовувались три ΔE -е-телескопи з кремнієвими ΔE - і E-детекторами товщиною 40 мкм і 0,3 мм відповідно та один телескоп з газовим ΔE -детектором, еквівалентним кремнієвому ΔE -детектору товщиною 5 мкм, та кремнієвим E-детектором (0,3 мм).

Типовий двовимірний $\Delta E(E)$ -спектр продуктів реакцій ⁶Li(¹⁵N, X) показано на рис. 1. Видно, що експериментальна методика забезпечувала реєстрацію продуктів реакцій із зарядами Z = 3 - 8 та ідентифікацію їх за зарядами і масами.

Типові енергетичні спектри ¹⁵N та ⁶Li показано на рис. 2. Суцільними кривими a і b показано неперервні фони, а δ і c – наближення піків екс∆Е, канали 250 ⁶Li(¹⁵N, X) $E_{\pi a 6}$ (¹⁵N) = 81 MeB 200 11 = 150 100 50 ^{9,10,11}Be 0 50 100 150 250 канали

Рис. 1. Типовий $\Delta E(E)$ -спектр продуктів реакцій ⁶Li(¹⁵N, X) при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81$ MeB.

периментальних спектрів ¹⁵N і ⁶Li симетричними гауссіанами, площі яких використовувалися для обчислення диференціальних перерізів $\frac{d\sigma(\theta)}{d\Omega}$ розсіяння іонів ¹⁵N на малих кутах $\theta^{o}_{c.ц.м.}(^{15}N)$ на основі спектрів ¹⁵N та на великих кутах $\theta^{o}_{c.ц.м.}(^{15}N) = 180^{\circ} - \theta^{o}_{c.ц.м.}(^{6}Li)$ на основі спектрів ⁶Li. Таким способом було отримано кутові розподіли перерізів пружного та непружного розсіяння іонів ¹⁵N ядрами ⁶Li у повному кутовому діапазоні.

Рис. 2. Типові енергетичні спектри ¹⁵N і ⁶Li з розсіяння ⁶Li(¹⁵N, ¹⁵N)⁶Li при енергії $E_{\text{лаб}}(^{15}N) = 81$ MeB: *a*, *в* – спектри з неперервними фонами від багаточастинкових реакцій (суцільні криві – фони); *б*, *г* – спектри з вилученими фонами (криві – симетричні гауссіани).

Похибки в обчисленні площ ізольованих та частково перекритих піків не перевищували 20 %. Для повністю перекритих піків ці похибки становили 30 - 40 %.

Отримані у відносних одиницях експериментальні перерізи пружного розсіяння ядер ⁶Li + ¹⁵N нормувалися до розрахованих за оптичною моделлю (OM) на малих кутах ($\theta_{c.п.м.} < 30^{\circ}$), де домінує кулонівське розсіяння та OM-перерізи слабо залежать від невизначеності параметрів оптичного потенціалу. При цьому використовувався оптичний потенціал WS з параметрами дійсної частини, отриманими з підгонки цієї частини до фолдінг-потенціалу DF (потенціал подвійної згортки потенціалів взаємодії нуклонів ядер ¹⁵N і ⁶Li – Double Folded potential) з використанням потенціалу нуклон-нуклонної взаємодії M3Y Рейда (Reid) [13, 14].

Визначений множник абсолютизації перерізів пружного розсіяння цих ядер використовувався

також для нормування диференціальних перерізів непружного розсіяння ядер ⁷Li + ¹⁵N. Похибка абсолютизації диференціальних перерізів пружного та непружного розсіяння ядер ⁷Li + ¹⁵N не перевищувала ~20 %.

Отримані експериментальні диференціальні перерізи пружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії $E_{na6}(^{15}N) = 81$ МеВ порівнюються на рис. З з експериментальними даними пружного розсіяння ядер ⁷Li + ¹⁵N при тій самій енергії ¹⁵N [1] залежно від переданого імпульсу q_t . Видно відмінності експериментальних даних пружних розсіянь ядер ⁶Li + ¹⁵N і ⁷Li + ¹⁵N для багатьох значень переданих імпульсів q_t , що може бути обумовлено як відмінністю потенціального розсіяння цих пар ядер, так і різними внесками в канали пружних розсіянь інших ядерних процесів (переорієнтацій спінів ядер ⁶Li і ⁷Li та внесків реакцій передач).

Рис. 3. Порівняння диференціальних перерізів пружних розсіянь ${}^{6}\text{Li}({}^{15}\text{N}, {}^{15}\text{N}){}^{6}\text{Li}$ та ${}^{7}\text{Li}({}^{15}\text{N}, {}^{15}\text{N}){}^{7}\text{Li}$ [1] при енергії $E_{\text{лаб}}({}^{15}\text{N}) = 81$ MeB, залежних від переданих імпульсів q_{t} .

3. Аналіз експериментальних даних

Експериментальні дані пружного та непружного розсіяння ядер ⁶Li + ¹⁵N проаналізовано за МЗКР з використанням потенціалу WS з об'ємним поглинанням (W_S)

$$U(r) = -V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} - iW_s \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

з параметрами $X_k = \{V, r_V, a_V, W_S, r_W, a_W\}$ та кулонівського потенціалу взаємодії ядер ⁶Li + ¹⁵N (*T* + *P*) як рівномірно заряджених куль з радіусами

$$R_i = r_i (A_P^{1/3} + A_T^{1/3}) \ (i = V, W_S, C).$$
(2)

Для потенціалу кулонівської взаємодії ядер ${}^{6}\text{Li} + {}^{15}\text{N}$ в усіх МЗКР-розрахунках використовувався параметр $r_{C} = 1,25$ фм.

Початкові значення параметрів $X_V = \{V_0, r_V, a_V\}$ дійсної частини

$$U_V(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1}$$

потенціалу WS визначалися з підгонки потенціалу $U_V(r)$ до фолдінг-потенціалу DF взаємодії ядер ⁶Li + ¹⁵N у периферійній області цих потенціалів зміною параметрів X_V . Для розрахунків потенціалу DF використано програму DFPOT [3] та розподіли зарядів в ядрах ⁶Li i ¹⁵N з роботи [4]. Остаточні значення параметрів X_k отримано з підгонки M3KP-перерізів пружного розсіяння ядер ¹⁵N + ⁶Li до експериментальних даних. МЗКР-розрахунки виконувались за допомогою програми FRESCO [5].

У МЗКР-розрахунках у схему зв'язку каналів включались пружне та непружне розсіяння ядер ⁶Li + ¹⁵N, процес переорієнтації спіну ядра ⁶Li, а також реакції одно- та двоступінчастих передач нуклонів і кластерів. При цьому вважалось, що низькоенергетичні збудження ядер мають колективну природу (ротаційну або вібраційну).

Для обчислення переходів ядер ⁶Li та ¹⁵N у збуджені стани використовувався форм-фактор

$$V_{\lambda}(r) = -\frac{\delta_{\lambda}}{\sqrt{4\pi}} \frac{dU(r)}{dr}, \qquad (3)$$

де δ_{λ} - довжина деформації ядра λ -мультипольності (табл. 1).

Рис. 4. Схеми переходів ядер ⁶Li та ¹⁵N у збуджені стани. Дугами показано процес переорієнтації спінів ядер.

Необхідні для МЗКР-розрахунків спектроскопічні амплітуди нуклонів і кластерів x в ядерних системах A = C + x обчислювались у рамках трансляційно-інваріантної моделі оболонок (ТІМО)

Таблиця 1. Параметри деформації ядер ⁶Li i ¹⁵N

Ядра	$\begin{array}{c} 0 \longrightarrow E_{36.}, \\ \text{MeB} \end{array}$	J^{π}	λ	δ _λ , фм	${\beta_\lambda}^*$	Літ.
⁶ Li	$0 \rightarrow 0,0$	1+	2	-0,78	-0,36	[6]
	$0 \to 2,185$	3+	2	-2,54	-0,72	[6]
			4	1,00	0,47	[7]
	$0 \rightarrow 4,310$	2+	2	-2,54	-0,72	[6]
	$0 \to 5,700$	1+	2	-2,54	-0,72	[6]
¹⁵ N	$0 \to 5,270$	5/2+	3	1,0	0,27	[8]
	$0 \rightarrow 5,299$	1/2+	1	1,0	0,27	[8]
	$0 \rightarrow 6,324$	3/2-	2	1,0	0,27	[8]
	$0 \rightarrow 7,155$	5/2+	3	1,0	0,27	[8]
	$0 \to 7,301$	3/2+	1	1,0	0,27	[8]
	$0 \rightarrow 7,\overline{567}$	7/2+	3	1,0	0,27	[8]

$$^{*}\beta_{\lambda} = \delta_{\lambda}/R \ (R = 1,25A^{1/3}).$$

Схеми переходів ядер ⁶Li i ¹⁵N показано на рис. 4, а діаграми реакцій передач – на рис. 5.

Рис. 5. Діаграми реакцій одно- та двоступінчастих передач, внески яких враховувалися в розсіянні ядер ${}^{6}Li + {}^{15}N$.

[9] за допомогою програми DESNA [10, 11] з використанням таблиць хвильових функцій ядер 1р-оболонки [12]. Спектроскопічні амплітуди S_x подано в табл. 2.

Таблиця 2. Спектроскопічні амплітуди S_x кластерів та нуклонів x у системах A = C + x

Α	С	x	nLj	S_x	Α	С	x	nLj	S_x
⁶ Li	d	α	$2S_{1/2}$	1,061	¹⁵ N	⁶ Li	⁹ Be	3S _{3/2}	-0,274
⁶ Li	t	³ He	$2S_{1/2}$	0,943				$2D_{1/2}$	-0,091 ^(a)
⁶ Li	³ He	t	$2S_{1/2}$	0,943				$2D_{3/2}$	-0,182
⁶ Li	α	d	$2S_1$	-1,056	¹⁵ N	^{11}B	α	$2D_2$	0,435 ^(a)
⁶ Li	⁵ He	р	$1P_{1/2}$	-0,596 ^(a)	¹⁵ N	$^{12}\mathbf{B}$	³ He	$2P_{1/2}$	0,254 ^(a)
			$1P_{3/2}$	0,667				$2P_{3/2}$	-0,090
⁶ Li	⁵ Li	n	$1P_{1/2}$	0,596 ^(a)	¹⁵ N	^{12}C	t	$2P_{1/2}$	0,380

7Li

⁷Be

⁸Be

⁹B

 $^{10}\mathbf{B}$

-								
С	x	nL_j	S_x	Α	С	x	nL_j	S_x
		$1P_{3/2}$	-0,667	¹⁵ N	¹³ C	d	$2S_1$	0,248 ^(a)
⁶ Li	n	$1P_{1/2}$	-0,657				$1D_1$	0,444 ^(a)
		$1P_{3/2}$	-0,735 ^(a)	¹⁵ N	¹⁴ C	р	$1P_{1/2}$	-0,598
⁶ Li	р	$1P_{1/2}$	-0,657	¹⁵ N	^{14}N	n	$1P_{1/2}$	-1,091 ^(a)
		$1P_{3/2}$	-0,735 ^(a)				$1P_{3/2}$	0,386
⁶ Li	d	$2S_1$	1,217	¹⁶ N	¹⁵ N	n	$1D_{3/2}$	-0,270
⁶ Li	t	$2P_{1/2}$	-0,192	^{16}O	¹⁵ N	р	$1P_{1/2}$	-1,461 ^(a)
		$2P_{3/2}$	-0,215 ^(a)	¹⁷ O	¹⁵ N	d	$2P_2$	-0,552
⁶ Li	³ He	$2P_{1/2}$	-0,192	^{18}O	¹⁵ N	t	$2P_{1/2}$	-0,261 ^(a)
		2P _{3/2}	-0,215 ^(a)	¹⁸ F	¹⁵ N	³ He	$2P_{1/2}$	-0,061
⁶ Li	α	$2D_2$	-0,215				$2P_{3/2}$	0,174 ^(a)
				¹⁹ F	¹⁵ N	α	$4P_0$	-0,638

Продовження табл. 2

 $^{(a)}S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x.$

Кутові розподіли експериментальних даних пружного розсіяння ядер ${}^{15}N + {}^{6}Li$ при енергії $E_{\pi a 6}({}^{15}N) = 81$ МеВ та відповідні МЗКР-перерізи різних процесів, обчислені з параметрами потен-

ціалу WS, наведеними в табл. 3, показано на рис. 6. Для порівняння в таблиці наведено також параметри потенціалу WS взаємодії ядер $^{15}N + ^{7}Li$ [1].

Таблиця 3. Параметри потенціалів взаємодії ядер

T + P	Елаб, МеВ	V ₀ , MeB	<i>r</i> _V , фм	<i>а</i> _{<i>V</i>} , фм	W _s , MeB	<i>r</i> _W , фм	<i>а</i> _{<i>W</i>} , фм	Літ.
${}^{6}\text{Li} + {}^{15}\text{N}$	81	140	0,805	0,75	10	1,25	0,75	
$^{7}\text{Li} + {}^{15}\text{N}$	81	150	0,800	0,76	12	1,25	0,76	[1]

Рис. 6. Диференціальні перерізи пружного розсіяння ядер ⁶Li(¹⁵N, ¹⁵N)⁶Li при енергії $E_{\pi a 6}(^{15}N) = 81$ MeB. Криві – M3КР-перерізи різних ядерних процесів (див. текст). Крива Σ – когерентна сума перерізів усіх процесів.

Штриховими кривими показано потенціальне розсіяння іонів ¹⁵N ядрами ⁶Li (крива <pot>), процес переорієнтації спіну ядра ⁶Li (крива

<reor>) та двоступінчасті процеси (див. рис. 5) передач нейтронів n + n, протонів p + p, дейтронів d + d, тритонів t + t, ³He + ³He, $\alpha + \alpha$ (криві <nn>, <pp>, <dd>, <tt>, <³He³He>, < $\alpha\alpha$ > відповідно), а також передача кластера ⁹Be (крива <⁹Be>).

Видно, що в пружному розсіянні ядер 15 N + ⁶Li домінують потенціальне розсіяння та процес переорієнтації спіну ядра ⁶Li. Незначні внески в це розсіяння дають двоступінчасті передачі нейтронів і протонів. Внески інших реакцій передач мізерні. Суцільною кривою Σ на цьому рисунку показано сумарні МЗКР-перерізи пружного розсіяння ядер ¹⁵N + ⁶L при врахуванні всіх процесів. Видно, що ці МЗКР-перерізи задовільно описують експериментальні дані з пружного розсіяння ядер ¹⁵N + ⁶Li.

На рис. 7 порівнюються сумарні МЗКРперерізи пружного розсіяння ядер ¹⁵N + ⁶Li при використанні параметрів потенціалів WS взаємодії ядер ¹⁵N + ⁶Li (крива $\Sigma_{(6Li+15N)}$) та ¹⁵N + ⁷Li (крива $\Sigma_{(7Li+15N)}$) із врахуванням процесу переорієнтації спіну ядра ⁷Li ($\delta_2 = 2,0 \, \phi_M$ [1]). Видно значні відмінності цих МЗКР-перерізів на великих кутах (*isomoniчний ефект*). На цьому рисунку також показано МЗКР-перерізи пружного розсіяння ядер 15 N + 6 Li при використанні оптичного потенціалу DF

 $U_{\rm DF}(r) = V_{\rm DF}(r) + i W_{\rm DF}(r) = V_{\rm DF}(r) + i k V_{\rm DF}(r)$ (3)

при значенні параметра k = 0,1, визначеного методом підгонки МЗКР-розрахунків з використанням потенціалу $U_{DF}(r)$ до експериментальних даних цього розсіяння (крива Σ_{DF}).

Рис. 7. Порівняння M3KP-перерізів пружного розсіяння ядер ¹⁵N + ⁶Li при енергії $E_{\pi a 6}(^{15}N) = 81$ MeB при використанні параметрів потенціалів WS взаємодії ядер ¹⁵N + ⁶Li (крива $\Sigma_{(6Li+15N)}$) та ¹⁵N + ⁷Li (крива $\Sigma_{(7Li+15N)}$), а також при використанні фолдінг-потенціалу DF взаємодії ядер ¹⁵N + ⁶Li (крива Σ_{DF}).

Оптичні потенціали WS та DF взаємодії ядер $^{15}N + {}^{6}Li$ порівнюються на рис. 8. Дійсна частина потенціалу WS (крива V) добре узгоджується з фолдінг-потенціалом DF у поверхневій області взаємодії ядер $^{15}N + {}^{6}Li$ (r > 3 фм), де в основному відбуваються ядерні процеси.

Отримані експериментальні дані непружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії

 $E_{лаб}(^{15}N) = 81$ MeB показано на рис. 9 для збуджень 2,185 MeB (3⁺), 4,31 MeB (2⁺), 5,7 MeB (1⁺) ядра ⁶Li та на рис. 10 i 11 – для збуджень 5,27 – 8,57 MeB ядра ¹⁵N. Кривими на цих рисунках показано M3KP-розрахунки за моделлю ротаційних та вібраційних збуджень ядер ⁶Li i ¹⁵N, використовуючи форм-фактор (1).

Рис. 8. Порівняння оптичних потенціалів WS і DF взаємодії ядер ¹⁵N + ⁶Li.

Рис. 9. Диференціальні перерізи непружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії $E_{\pi a 6}(^{15}N) = 81$ MeB для збуджених станів 2,185 - 5,7 MeB ядра ⁶Li. Криві — МЗКР-розрахунки за моделлю колективних збуджень.

Рис. 10. Диференціальні перерізи непружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81$ МеВ для збуджених станів 5,27 + 5,299 МеВ і 6,323 МеВ ядра ¹⁵N. Криві – МЗКР-розрахунки за моделлю колективних збуджень.

4. Основні результати та висновки

Поміряно диференціальні перерізи пружного та непружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81$ МеВ для основних та збуджених станів 2,185 - 5,7 МеВ ядра ⁶Li і збуджених станів 5,27 - 8,571 МеВ ядер ¹⁵N. Експериментальні дані диференціальних перерізів розсіяння ядер ¹⁵N + ⁶Li отримано в широкому кутовому діапазоні.

Експериментальні дані розсіяння ядер $^{15}N + ^{6}Li$ проаналізовано за МЗКР із включенням у схему зв'язку каналів пружного й непружного розсіяння ядер $^{15}N + ^{6}Li$ та реакцій передач нуклонів і кластерів. Вважалось, що збуджені стани ядер ^{15}N і ^{6}Li мають колективну природу (ротаційні або вібраційні).

У розрахунках МЗКР-перерізів розсіяння ядер ¹⁵N + ⁶Li та реакцій передач використовувались потенціали взаємодії ядер типу WS та потенціал

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- A.T. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ⁷Li at 81 MeV versus that of ¹⁴N ions by ⁷Li at 80 and 110 MeV. Nucl. Phys. A 958 (2017) 234.
- 2. E. Piasecki et al. *Project ICARE at HIL* (Warsaw: Heavy Ion Laboratory, 2007) 38 p.
- J. Cook DFPOT: a program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.
- H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.

Рис. 11. Диференціальні перерізи непружного розсіяння іонів ¹⁵N ядрами ⁶Li при енергії $E_{\rm лаб}(^{15}N) = 81$ МеВ для збуджених станів 7,155 - 8,571 МеВ ядра ¹⁵N. Криві — МЗКР-розрахунки за моделлю колективних збуджень.

DF подвійної згортки взаємодії нуклонів ядер ¹⁵N і ⁶Li (фолдінг-потенціал V_{DF}) з уявною частиною $W_{DF} = i0.1 V_{DF}$.

Визначено параметри оптичного потенціалу WS взаємодії ядер $^{15}N + {}^{6}Li$ та механізми пружного й непружного розсіяння цих ядер. Установлено, що в пружному розсіянні ядер $^{15}N + {}^{6}Li$ основну роль відіграють потенціальне розсіяння та процес переорієнтації спіну ядра ${}^{6}Li$. Внески реакцій передач нуклонів і кластерів у це розсіянні незначні. У МЗКР-розрахунках реакцій передач використовувались спектроскопічні амплітуди нуклонів і кластерів, обчислені в даній роботі за ТІМО.

Проведено порівняння пружних розсіянь ядер $^{15}N + {}^{6}Li$ та $^{15}N + {}^{7}Li$ при $E_{\pi a 6}({}^{15}N) = 81$ МеВ. Виявлено розбіжності їхніх експериментальних даних та потенціалів взаємодії цих пар ядер (*isomoniчнi ефекти*).

- 5. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 6. M.F. Vineyard, K.W. Kemper, J. Cook. Excitation of ⁶Li by ¹⁶O at $E_{\rm cm} = 18.7$ MeV. Phys. Lett. B. 142 (1984) 249.
- 7. A.T. Rudchik et al. Energy dependence of the ${}^{6}\text{Li} + {}^{16}\text{O}$ elastic scattering versus that of ${}^{7}\text{Li} + {}^{16}\text{O}$. Eur. Phys. J. A 49 (2013) 74.
- A.T. Rudchik et al. ¹⁵N elastic and inelastic scattering by ¹¹B at 84 MeV. Nucl. Phys. A 939 (2015) 1.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.

- А.Т. Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). Препринт Ин-та ядерных исслед. АН УССР. КИЯИ-82-12 (К., 1982) 27 с.
- 11. А.Т Рудчик., Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонук-

лонных передач. УФЖ 30 (1985) 819.

- 12. А.Н. Бояркина. Структура ядер 1р-оболочки (Москва, Московский ун-т, 1973) 62 с.
- 13. R. Reid. Local phenomenological nucleon-nucleon potentials. Annals of Physics 50(3) (1968) 411.
- R.V. Bertsch et al. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284(3) (19767) 399.

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. О. Чепурнов¹, К. Русек², К. В. Кемпер³, Е. Пясецки², А. Столяж², А. Тщиньска², Вал. М. Пирнак¹, О. А. Понкратенко¹, И. Строек⁴, Е. И. Кощий⁵, Р. Сюдак⁶, С. Б. Сакута⁷, А. П. Ильин¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Институт ядерных исследований НАН Украины, Киев, Украина
 ² Лаборатория тяжелых ионов Варшавского университета, Варшава, Польша
 ³ Отдел физики, Флоридский государственный университет, Таллахаси, США
 ⁴ Национальный центр ядерных исследований, Варшава, Польша
 ⁵ Циклотронный институт Техасского А&М университета, Техас, США
 ⁶ Институт ядерной физики им. Г. Неводничаньского, Краков, Польша
 ⁷ Национальный исследовательский центр «Институт Курчатова», Москва, Россия

*Ответственный автор: rudchik@kinr.kiev.ua

УПРУГОЕ И НЕУПРУГОЕ РАССЕЯНИЕ ИОНОВ ¹⁵N ЯДРАМИ ⁶Li ПРИ ЭНЕРГИИ 81 МэВ

Измерены дифференциальные сечения упругого и неупругого рассеяния ионов ¹⁵N ядрами ⁶Li при энергии $E_{na6}(^{15}N) = 81$ МэВ. Экспериментальные данные проанализированы по методу связанных каналов реакций (МСКР). Упругое и неупругое рассеяние, процесс реориентации спина ядра ⁶Li и реакции передач нуклонов и кластеров были включены в схему связи каналов. В МСКР-расчетах использованы потенциал Вудса - Саксона (WS) и фолдинг-потенциал DF взаимодействия ядер ¹⁵N + ⁶Li. Определены параметры потенциала WS, деформации ядер ⁶Li и ¹⁵N и получены сведения о роли других процессов в упругом и неупругом рассеянии ядер ¹⁵N + ⁶Li. В МСКР-расчетах реакций передач использованы спектроскопические амплитуды нуклонов и кластеров, рассчитанные по трансляционной инвариантной модели оболочек. Установлено, что в упругом рассеянии ядер ¹⁵N + ⁶Li основную роль играют потенциальное рассеяние и процесс реориентации спина ядра ⁶Li. Вклады реакций передач нуклонов и кластеров в это рассеяние незначительны. При сравнении результатов исследования упругих рассеяний ядер ¹⁵N + ⁶Li и и ¹⁵N + ⁶Li и и ¹⁵N + ⁶Li основную роль играют потенциальное рассеяние и процесс реориентации спина ядра ⁶Li. Вклады реакций передач нуклонов и кластеров в это рассеяние незначительны. При сравнении результатов исследования упругих рассеяний ядер ¹⁵N + ⁶Li и ¹⁵N + ⁷Li при энергии $E_{na6}(^{15}N) = 81$ МэВ обнаружены заметные различия как экспериментальных данных, так и потенциалов взаимодействия этих пар ядер (*изотопические эффекты*).

Ключевые слова: ядерные реакции ⁶Li(¹⁵N, ¹⁵N), E = 81 МэВ, ядерные спектры, $\sigma(\theta)$, механизмы рассеяния ядер, параметры деформации ядер.

A. T. Rudchik^{1,*}, A. A. Rudchik¹, O. O. Chepurnov¹, K. Rusek², K. W. Kemper³, E. Piasecki², A. Stolarz², A. Trczińska², Val. M. Pirnak¹, O. A. Ponkratenko¹, I. Strojek⁴, E. I. Koshchy⁵, R. Siudak⁶, S. B. Sakuta⁷, A. P. Ilyin¹, Yu. M. Stepanenko¹, V. V. Uleshchenko¹, Yu. O. Shyrma¹

*Corresponding author: rudchik@kinr.kiev.ua

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
 ² Heavy Ion Laboratory of Warsaw University, Warsaw, Poland
 ³ Physics Department, Florida State University, Tallahassee, USA
 ⁴ National Center for Nuclear Researches, Warsaw, Poland
 ⁵ Cyclotron Institute Texas A&M University, College Station, USA

⁶ H. Niewodniczański Institute of Nuclear Physics, Cracow, Poland

⁷ Russian Research Center "Kurchatov Institute", Moscow, Russia

*Corresponding author: rudchik@kinr.kiev.ua

ELASTIC AND INELASTIC SCATTERING OF ¹⁵N IONS BY ⁶Li NUCLEI AT ENERGY 81 MeV

Angular distributions of the elastic and inelastic scattering of ¹⁵N ions by ⁶Li nuclei were measured at the energy $E_{lab}(^{15}N) = 81$ MeV. The data were analyzed within the coupled-reaction-channels method (CRC). The elastic and inelastic scattering, spin reorientation of ⁶Li as well as the one- and two-step transfer reactions were included in the channels-coupling scheme. The potential of Woods - Saxon form (WS) and double folded potential DF for the ¹⁵N + ⁶Li

nuclei interaction were used in CRC-calculations. The WS potential parameters, deformation parameters of ⁶Li and ¹⁵N nuclei were deduced and the information about the role of other processes in the ¹⁵N + ⁶Li elastic and inelastic scattering was obtained. Spectroscopic amplitudes of nucleons and clusters, calculated according to a translational invariant shell model, were used in the CRC-calculations. It was established that the potential scattering and the ⁶Li spin reorientation are dominated in the ¹⁵N + ⁶Li elastic scattering. Contributions from particle transfers in this scattering were negligible. Comparing the ¹⁵N + ⁶Li and ¹⁵N + ⁷Li elastic scattering at the energy $E_{lab}(^{15}N) = 81$ MeV, it was found marked differences between the experimental data and interaction potentials (*isotopic effects*).

Keywords: nuclear reactions ⁶Li(¹⁵N, ¹⁵N), E = 81 MeV, particle spectra, $\sigma(\theta)$, nuclear scattering mechanisms, nuclear deformation parameters.

REFERENCES

- A.T. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ⁷Li at 81 MeV versus that of ¹⁴N ions by ⁷Li at 80 and 110 MeV. Nucl. Phys. A 958 (2017) 234.
- 2. E. Piasecki et al. *Project ICARE at HIL* (Warsaw: Heavy Ion Laboratory, 2007) 38 p.
- J. Cook. DFPOT: a program for the calculation of double-folded potentials. Comp. Phys. Com. 25 (1982) 125.
- H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.
- I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 6. M.F. Vineyard, K.W. Kemper, J. Cook. Excitation of ⁶Li by ¹⁶O at $E_{\rm cm} = 18.7$ MeV. Phys. Lett. B 142 (1984) 249.
- A.T. Rudchik et al. Energy dependence of the ⁶Li + ¹⁶O elastic scattering versus that of ⁷Li + ¹⁶O. Eur. Phys. J. A 49 (2013) 74.

- 8. A.T. Rudchik et al. ¹⁵N elastic and inelastic scattering by ¹¹B at 84 MeV. Nucl. Phys. A 939 (2015) 1.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 10. A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitude calculations for different clusters in the 1p-shell nuclei (code DESNA). The preprint of the Institute for Nuclear Researches AS of Ukraine. КИЯИ-82-12 (Kyiv, 1982) 27 p. (Rus).
- A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitudes of multinuclear clusters in the 1p-shell nuclei and multinuclear transfer reaction analysis. Ukr. J. Phys. 30 (1985) 819. (Rus)
- 12. A.N. Boyarkina. *Structure of Nuclei of 1p-shell* (Moskva, Moscow University, 1973) 62 p. (Rus)
- 13. R. Reid. Local phenomenological nucleon-nucleon potentials. Annals of Physics 50(3) (1968) 411.
- G. Bertsch et al. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284(3) (1977) 399.

Надійшла 31.07.2019 Received 31.07.2019