ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.172.17

https://doi.org/10.15407/jnpae2020.01.029

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. О. Чепурнов¹, К. Русек², К. В. Кемпер³, Є. І. Кощий⁴, С. Ю. Межевич¹, Вал. М. Пірнак¹, О. А. Понкратенко¹, А. Столяж², Р. Сюдак⁵, А. П. Ільїн¹, Б. В. Міщенко¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Інститут ядерних досліджень НАН України, Київ, Україна ² Лабораторія важких іонів Варшавського університету, Варшава, Польща ³ Відділ фізики Флоридського державного університету, Таллахасі, США ⁴ Циклотронний інститут Техаського A&M університету, Техас, США

5 Інститут ядерної фізики ім. Г. Неводнічаньского, Краків, Польща

*Відповідальний автор: rudchik@kinr.kiev.ua

ПРУЖНЕ Й НЕПРУЖНЕ РОЗСІЯННЯ ІОНІВ ¹⁰В ЯДРАМИ ⁶Li ПРИ ЕНЕРГІЇ 51 МеВ

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння іонів ¹⁰В ядрами ⁶Li при енергії $E_{\rm лаб}(^{10}\text{B}) = 51$ MeB для основних і збуджених станів 2,18 – 5,7 MeB ядра ⁶Li та 0,7 – 6,56 MeB ядра ¹⁰B. Отримані експериментальні дані та відомі з літератури дані пружного розсіяння іонів ⁶Li ядрами ¹⁰B при енергії $E_{\rm лаб}(^{6}\text{Li}) = 30$ MeB проаналізовано за методом зв'язаних каналів реакцій. У схему зв'язку каналів включалися пружне й непружне розсіяння ядер ⁶Li + ¹⁰B, процеси переорієнтації спінів ядер ⁶Li i ¹⁰B та найбільш важливі реакції передач. Визначено параметри потенціалу взаємодії ядер ⁶Li + ¹⁰B типу Вудса – Саксона та параметри деформації ядер ⁶Li i ¹⁰B. Досліджено механізми непружного розсіяння ядер ⁶Li + ¹⁰B у рамках моделі колективних збуджень ядер, а також відмінності пружного розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B реакцій одно- та двоступінчастих передач нуклонів і кластерів, обчислених за трансляційно-інваріантною моделлю оболонок.

Ключові слова: ядерні реакції ⁶Li(¹⁰B, ¹⁰B), E = 51 MeB, ядерні спектри, $\sigma(\theta)$, механізми розсіяння ядер, параметри деформації ядер.

1. Вступ

Дослідження ядерних процесів при взаємодії легких ядер мають важливе значення для отримання відомостей про потенціали ядро-ядерної взаємодії, оболонкову та кластерну структуру стабільних і нестабільних ядер, про механізми ядерних процесів тощо.

У даній роботі подано результати дослідження пружного й непружного розсіяння іонів ¹⁰В ядрами ⁶Li при енергiї $E_{лаб}(^{10}\text{B}) = 51$ MeB, експериментальні дані якого було отримано в експерименті з одночасним вимірюванням реакцій ⁶Li(¹⁰B, X) з виходом стабільних і нестабільних продуктів із зарядами Z = 3 - 5. У літературі відомо лише експериментальні дані пружного розсіяння ядер ⁶Li + ¹⁰В при енергії $E_{\text{паб}}(^{6}\text{Li}) = 30$ MeB [1]. Метою досліджень пружного й непружного розсіяння іонів ¹⁰В ядрами ⁶Li у даній роботі було отримання експериментальних даних для основних станів ядер ⁶Li i¹⁰В та збуджених станів 2,185 – 5,7 МеВ ядра ⁶Li i станів 0,718 – 5,18 МеВ ядра ¹⁰В, аналіз цих даних за методом зв'язаних каналів реакцій (МЗКР), оптичною моделлю (ОМ) та моделлю колективних збуджень ядер ротаційної й вібраційної природи з використанням потенціалів Вудса - Саксона (WS) та подвійного фолдінг-потенціалу (DF) з уявною частиною $U_{DF} = V_{DF} + ikW_{DF}$. При аналізі даних за M3KP у схему зв'язку включались канали пружного й непружного розсіяння та найбільш важливі реакції передач нуклонів і кластерів *x*, спектроскопічні амплітуди S_x яких в ядрах A = C + x обчислювались у рамках трансляційно-інваріантної моделі оболонок (TIMO). Визначено внески реакцій передач та процесів переорієнтації спінів ядер ¹⁰B і ⁶Li у пружне розсіяння ядер ¹⁰B + ⁶Li. У даній роботі проаналізовано за M3KP також експериментальні дані пружного розсіяння іонів ⁶Li ядрами ¹⁰B з роботи [1].

2. Методика експерименту

Диференціальні перерізи реакцій ⁶Li(¹⁰B, *X*) вимірювались на Варшавському циклотроні U-200P (Лабораторія важких іонів Варшавського університету) при енергії пучка іонів ¹⁰B $E_{\rm лаб}(^{10}B) = 51$ MeB з використанням самопідтрим-

© А. Т. Рудчик, А. А. Рудчик, О. О. Чепурнов, К. Русек, К. В. Кемпер, Є. І. Кощий, С. Ю. Межевич, Вал. М. Пірнак, О. А. Понкратенко, А. Столяж, Р. Сюдак, А. П. Ільїн, Б. В. Міщенко, Ю. М. Степаненко, В. В. Улещенко, Ю. О. Ширма, 2020 ної мішені літію товщиною ~ 900 мкг/см² із ~ 85 %-ним збагаченням ізотопом ⁶Li. Розкид енергії пучка іонів ¹⁰В на мішені становив ~ 0,5 %.

Продукти реакції реєструвались двома ΔE -спектрометрами, в одному з яких ΔE -детектором була іонізаційна камера, а в другому – кремнієвий детектор товщиною 67 мкм. В обох спектрометрах використовувались кремнієві *E*-детектори товщиною ~ 1 мм. Робочим газом в іонізаційній камері використовувався аргон при тиску ~ 200 мм рт. ст., при якому енергетичні втрати продуктів реакції в іонізаційній камері були еквівалентними відповідним втратам у кремнієвому детекторі товщиною 15 мкм. Спектрометр з іоні-

заційною камерою застосовувався для реєстрації продуктів реакцій із зарядами Z = 3 - 7, а з кремнієвим ΔE -детектором для ядер із Z = 3 - 5.

В експерименті використовувалась електроніка стандарту САМАС та комп'ютерна інформаційна система SMAN [2]. Спектрометричні дані накопичувались у вигляді двовимірних $\Delta E(E)$ спектрів розміром 256 × 256 каналів.

Типові $\Delta E(E)$ -спектри для обох типів спектрометрів показано на рис. 1. Видно, що спектрометр з іонізаційною камерою забезпечував надійну ідентифікацію продуктів реакцій лише за зарядами, а з кремнієвим ΔE -детектором за зарядами та масами.

Рис. 1. Типові $\Delta E(E)$ -спектри продуктів реакцій ⁶Li(¹⁰B, X) при енергії $E_{\text{лаб}}(^{10}\text{B}) = 51$ MeB спектрометрів з іонізаційною камерою (*a*) та з кремнієвим ΔE -детектором (*б*).

Рис. 2. Типові енергетичні спектри ядер ¹⁰В і ⁶L з пружного й непружного розсіяння іонів ¹⁰В ядрами ⁶Lі при енергії $E_{na6}(^{10}B) = 51 \text{ MeB}$: *а*, *в* – з неперервними фонами від багаточастинкових реакцій; *б*, *г* – після видалення фонів.

Типові експериментальні спектри продуктів реакцій ⁶Li(¹⁰B, ¹⁰B)⁶Li та ⁶Li(¹⁰B, ⁶Li)¹⁰B показано на рис. 2, *а*, *в* з неперервними фонами від багаточастинкових реакцій і домішок у мішені та

спектри з вилученими фонами (δ , ϵ). Кривими на рисунку показано фони (a, b), та наближення експериментальних піків симетричними гауссіанами (δ , ϵ).

Площі гауссіанів використовувались для обчислення диференціальних перерізів розсіяння ядер ${}^{10}B + {}^{6}Li$ з похибками 30 - 40 %. Експериментальні дані перерізів пружного розсіяння ядер ¹⁰B + ⁶Li на малих кутах $\theta_{nab} < 15^{\circ}$ нормувалися до обчислених за ОМ перерізів цього розсіяння, де переважає кулонівська взаємодія ядер та ОМ-перерізи незначно залежать від неоднозначності параметрів потенціалів WS. Помилка такої абсолютизації диференціальних перерізів пружного й непружного розсіяння ядер ${}^{10}B + {}^{6}Li$ не перевищує 30 %. Отриманий таким чином нормувальний множник $N_{\text{норм}}$ використовувався також для нормування експериментальних перерізів непружного розсіяня ядер 10 B + 6 Li та реакцій передач ⁶Li(¹⁰B, *X*).

Кутові розподіли диференціальних перерізів пружного розсіяння іонів ¹⁰В ядрами ⁶Li при енергії $E_{\rm лаб}(^{10}\text{B}) = 51$ МеВ показано на рис. З залежно від переданого імпульсу q_i . Для порівняння там же показано також відомі з літератури експериментальні дані (без помилок для кращого показу різниці даних) пружного розсіяння іонів ¹⁰В ядрами ⁷Li при енергії 51 МеВ [3] та пружного розсіяння іонів ⁶Li ядрами ¹⁰В при енергії $E_{\rm лаб}(^{6}\text{Li}) = 30$ МеВ [1]. Видно, що отримані в даній роботі експериментальні дані пружного розсіяння ядер ¹⁰В + ⁶Li найбільше відрізняються від пружних розсіювань ядер ¹⁰В + ⁷Li та ⁶Li + ¹⁰В (30 МеВ) при переданих імпульсах $q_i > 2 \text{ фм}^{-1}$.

Рис. 3. Порівняння експериментальних диференціальних перерізів пружного розсіяння іонів ¹⁰В ядрами ⁶Li при енергії $E_{\text{лаб}}(^{10}\text{B}) = 51$ MeB з пружним розсіянням іонів ¹⁰В ядрами ⁷Li [3] та іонів ⁶Li ядрами ¹⁰В при енергії $E_{\text{лаб}}(^{6}\text{Li}) = 30$ MeB [1].

3. Аналіз експериментальних даних

Експериментальні дані пружного й непружного розсіяння ядер ¹⁰В + ⁶Li аналізувались за МЗКР із використанням потенціалу WS

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_S \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

та кулонівського потенціалу рівномірно зарядженої кулі

$$V_{C}(r) = \begin{cases} Z_{P} Z_{T} e^{2} (3 - r^{2} / R_{C}^{2}) / 2R_{C}, & r \le R_{C}, \\ Z_{P} Z_{T} e^{2} / r, & r > R_{C}, \end{cases}$$
(2)

де $R_i = r_i \left(A_P^{1/3} + A_T^{1/3}\right), i = V, W, C; A_P, A_T та Z_P, Z_T$ – маси і заряди іона *P* та мішені *T* відповідно. У всіх розрахунках використовувався параметр $r_C = 1.25$ фм.

Параметри { V_0 , r_V , a_V } дійсної частини V(r) потенціалу WS визначалися методом підгонки V(r)до дійсної частини $V_{DF}(r)$ оптичного потенціалу подвійної згортки (фолдінг-потенціалу) DF взаємодії ядер ¹⁰B + ⁶Li

$$U_{\rm DF}(r) = V_{\rm DF}(r) + iW_{\rm DF}(r) = V_{\rm DF}(r) + inV_{\rm DF}(r) \quad (3)$$

з уявною частиною, пропорційною дійсному фолдінг-потенціалу $W_{DF}(r) = nV_{DF}(r)$. Такого типу оптичний фолдінг-потенціал використано в багатьох відомих з літератури роботах. Коефіцієнт *n* визначався методом підгонки МЗКР-перерізів, обчислених з потенціалом $U_{DF}(r)$, до експериментальних даних пружного розсіяння ядер ¹⁰В + ⁶Li до відповідних експериментальних даних.

В обчисленні потенціалу $V_{DF}(r)$ використовувався потенціал нуклон-нуклонної взаємодії M3Y Рейда (Reid) [5, 6] та розподіли нуклонів в ядрах ¹⁰В і ⁶Li [7], отримані з аналізу відповідних експериментальних даних розсіяння електронів цими ядрами.

Рис. 4. Схеми переходів ядер ⁶Li і ¹⁰В у збуджені стани.

Для обчислення фолдінг-потенціалу $V_{DF}(r)$ використано програму DFPOT [4], а M3KP-розрахунки пружного й непружного розсіяння ядер ¹⁰B + ⁶Li проводились за допомогою програми FRESCO [8].

У систему зв'язку каналів включались пружне

й непружне розсіяння ядер 10 B + 6 Li, схеми яких показано на рис. 4, процеси переорієнтації спінів цих ядер, зображених на рисунку дугами, та найбільш важливі реакції передач нуклонів і кластерів *x* у процесі розсіяння цих ядер. Схеми реакцій передач показано на рис. 5.

Рис. 5. Діаграми реакцій передач для пружного й непружного розсіяння ядер ⁶Li + ¹⁰B.

Вважалось, що низькоенергетичні збуджені стани деформованих ядер ⁶Li та ¹⁰В мають переважно колективну природу – ротаційну або вібраційну. Перерізи переходів ядер у ці стани обчислювалися за моделлю колективних збуджень ядер, використовуючи форм-фактор

$$V_{\lambda}(r) = -\frac{\delta_{\lambda}}{\sqrt{4\pi}} \frac{dU(r)}{dr},$$

де δ_{λ} – параметр деформації ядер λ -мультипольності, значення якого визначалось методом підгонки теоретичних перерізів непружного розсіяння ядер до експериментальних даних. Значення параметрів δ_{λ} деформації ядер ¹⁰В і ⁶Li та величин $\beta_{\lambda} = \delta_{\lambda}/R$ при $R = 1,25A^{1/3}$, які було використано при МЗКР-аналізі експериментальних даних непружного розсіяння ядер ¹⁰В і ⁶Li, подано в табл. 1.

Таблиця 1. Параметри деформації ядер

Ядра	<i>Е</i> _{зб.} , МеВ	J^{π}	λ	δ _λ , фм	βλ	Літ.
	0,000	1+	2	-1,54	-0,68	[9]
	2,185	3+	2	-1,54	-0,68	[9]
⁶ Li			4	1,00	0,44	[10]
	4,310	2+	2	-1,54	-0,68	[9]
	5,700	1+	2	-1,54	0,68	[9]
	0,000	3+	2	1,8	0,67	[3]
	0,718	1+	2	1,8	0,67	[3]
	2,154	1+	2	1,8	0,67	[3]
			4	1,0	0,37	[3]
	3,587	2+	2	1,8	0,67	[3]
$^{10}\mathbf{B}$			4	1,0	0,37	[3]
	4.774	3+	2	1,8	0,67	[3]
			4	1,0	0,37	[3]
	5,110	2-	1	1,0	0,37	[3]
			3	1,0	0,37	[3]
	5,180	1+	2	1,8	0,67	[3]
			4	1,0	0,37	[3]

Необхідні для МЗКР-розрахунків реакцій передач спектроскопічні амплітуди S_x кластерів та нуклонів x у системах A = C + x обчислено в рамках ТІМО [11] за допомогою програми DESNA [12, 13], використовуючи таблиці хвильових функцій 1р-оболонки з роботи [14]. Спектроскопічні амплітуди S_x подано в табл. 2.

Таблиця 2. Спектроскопічні амплітуди S_x кластерів x у системах A = C + x

С	x	nL_j	S_x
5Не	n	$1P_{1/2}$	-0,596 ^(a)
IIC	Р	$1P_{3/2}$	0,667
51;		$1P_{1/2}$	0,596 ^(a)
LI	11	$1P_{3/2}$	-0,667
6 T ;	n	$1P_{1/2}$	-0,657
LI	11	$1P_{3/2}$	$-0,735^{(a)}$
6 T i	n	$1P_{1/2}$	-0,657
LI	Р	$1P_{3/2}$	$-0,735^{(a)}$
⁶ Li	d	$2S_1$	1,217
61.	+	$2P_{1/2}$	-0,192
°LI	ι	$2P_{3/2}$	$-0,215^{(a)}$
⁹ B ⁶ Li	3110	$2P_{1/2}$	-0,192
	пе	$2P_{3/2}$	$-0,215^{(a)}$
⁶ Li	α	$2D_2$	-0,125
		$2P_{3/2}$	0,419
⁷ Li	³ He	$1F_{5/2}$	$-0,104^{(a)}$
		$1F_{7/2}$	-0,347
		$2P_{3/2}$	-0,419
¹⁰ B ⁷ Be	t	$1F_{5/2}$	$-0,104^{(a)}$
		$1F_{7/2}$	0,347
⁸ Be	d	$1D_{3}$	0,811
⁹ Be	р	$1P_{3/2}$	1,185
⁹ B	n	1 P _{3/2}	-1,185
$^{10}\mathbf{B}$	n	1P _{3/2}	$-1,347^{(a)}$
$^{10}\mathbf{B}$	р	$1P_{3/2}$	$-1,347^{(a)}$
	C ⁵ He ⁵ Li ⁶ Li ⁶ Li ⁶ Li ⁶ Li ⁷ Li ⁷ Be ⁸ Be ⁹ Be ⁹ Be ⁹ Be ¹⁰ B ¹⁰ B	Cx ${}^{5}\text{He}$ p ${}^{5}\text{Li}$ n ${}^{6}\text{Li}$ n ${}^{6}\text{Li}$ p ${}^{6}\text{Li}$ d ${}^{6}\text{Li}$ d ${}^{6}\text{Li}$ 3He ${}^{6}\text{Li}$ ${}^{3}\text{He}$ ${}^{6}\text{Li}$ ${}^{3}\text{He}$ ${}^{7}\text{Li}$ 3He ${}^{7}\text{Be}$ t ${}^{7}\text{Be}$ t ${}^{8}\text{Be}$ d ${}^{9}\text{Be}$ p ${}^{9}\text{Be}$ n ${}^{10}\text{B}$ n ${}^{10}\text{B}$ p	$\begin{array}{c cccc} C & x & nL_{i} \\ \hline C & y & 1P_{1/2} \\ \hline {}^{5}\text{He} & p & 1P_{1/2} \\ \hline {}^{5}\text{Li} & n & 1P_{1/2} \\ \hline {}^{5}\text{Li} & n & 1P_{1/2} \\ \hline {}^{6}\text{Li} & p & 1P_{1/2} \\ \hline {}^{6}\text{Li} & p & 1P_{1/2} \\ \hline {}^{6}\text{Li} & d & 2S_{1} \\ \hline {}^{6}\text{Li} & d & 2S_{1} \\ \hline {}^{6}\text{Li} & t & 2P_{1/2} \\ \hline {}^{6}\text{Li} & d & 2S_{1} \\ \hline {}^{6}\text{Li} & t & 2P_{3/2} \\ \hline {}^{6}\text{Li} & 3^{}\text{He} & 2P_{1/2} \\ \hline {}^{2}P_{3/2} \\ \hline {}^{6}\text{Li} & \alpha & 2D_{2} \\ \hline {}^{7}\text{Li} & 3^{}\text{He} & 1F_{5/2} \\ \hline {}^{7}\text{Be} & t & 1F_{5/2} \\ \hline {}^{7}\text{Be} & t & 1F_{5/2} \\ \hline {}^{7}\text{Be} & t & 1F_{5/2} \\ \hline {}^{7}\text{Be} & d & 1D_{3} \\ \hline {}^{9}\text{Be} & p & 1P_{3/2} \\ \hline {}^{9}\text{B} & n & 1P_{3/2} \\ \hline {}^{10}\text{B} & n & 1P_{3/2} \\ \hline {}^{10}\text{B} & p & 1P_{3/2} \\ \hline \end{array}$

^(a) $S_{FRESCO} = (-1)^{J_C + j - J_A} \cdot S_x = -S.$

Рис. 6. Порівняння потенціалів WS та DF взаємодії ядер ¹⁰B + ⁶Li.

У МЗКР-розрахунках за допомогою програми FRESCO хвильові функції зв'язаних станів нуклонів та кластерів обчислювалися стандартним способом методом підгонки параметра V дійсної частини потенціалу WS до енергій зв'язку кластерів (нуклонів) x у системах A = C + x при значеннях параметрів $a_V = 0,65$ фм та $r_V = 1,25(C^{1/3} + x^{1/3})$ фм.

При виконанні МЗКР-розрахунків використовувались потенціали взаємодії ядер 10 B + 6 Li типу WS та DF (рис. 6).

Параметри { V_0 , r_V , a_V } дійсної частини V(r) потенціалу WS визначено методом підгонки V(r) до дійсної частини $V_{DF}(r)$ фолдінг-потенціалу DF. Ці параметри подано в табл. З разом з параметрами { W_S , r_W , a_W } уявної частини W(r) потенціалу WS, визначені методом підгонки M3KP-перерізів пружного розсіяння ядер ¹⁰B + ⁶Li до експериментальних даних цього розсіяння.

T (2			• •	•••	
Таблиця	1	Папамет	nи	потениялив	взяємолії	ялер
1 0.0.100000	~.	inchance	7 1 1	потенциаль	ронстоди	m y v p

P + T	Eлаб, MeB	<i>Е</i> с.ц.м., МеВ	Vo, MeB	<i>r</i> _V , фм	<i>а</i> _V , фм	Ws, MeB	<i>r</i> _{Ws} , фм	<i>а_{Ws}</i> , фм	<i>r</i> _{<i>C</i>} , фм	Літ.
${}^{10}\text{B} + {}^{6}\text{Li}$	51	19,13	100,0	0,820	0,800	15,0	1,250	0,800	1,250	
${}^{10}B + {}^{7}Li$	50	21,00	189,9	0,790	0,660	14,5	1,250	0,660	1,250	[3]
${}^{6}\text{Li} + {}^{10}\text{B}$	30	18,75	100,0	0,820	0,800	14,0	1,250	0,800	1,250	
${}^{6}\text{Li} + {}^{10}\text{B}$	30	18,75	173,0	1,210	0,802	8,9	2,170	0,947	1,780	[1]

Експериментальні дані диференціальних перерізів пружного розсіяння ядер ¹⁰В + ⁶Li при енергії $E_{\rm лаб}(^{10}B) = 51$ МеВ та МЗКР-розрахунки різних процесів з використанням потенціалу WS з параметрами (див. табл. 3) показано на рис. 7.

Рис. 7. Диференціальні перерізи пружного розсіяння ядер ⁶Li + ¹⁰В при енергії $E_{\text{лаб}}(^{10}\text{B}) = 51$ МеВ. Пунктирні криві – МЗКР-перерізи різних процесів (див. текст). Суцільною кривою Σ показано когерентну суму МЗКР-перерізів найбільш важливих процесів.

Штриховою кривою <pot> на рис. 7 показано потенціальне розсіянння ядер ¹⁰B + ⁶Li; кривими <re⁶Li> i <re¹⁰B> – процеси переорієнтації спінів (*peopiєнтації*) ядер ⁶Li i ¹⁰B при розсіянні ¹⁰B (див. рис. 4); кривою <a> – реакція передачі а-кластера; кривими <pp>, <nn>, <pt>, <dd>, <n³He> – реакції послідовних передач протонів p + p, нейтронів n + n та p + t, d + d, n + ³He відповідно. Діаграми цих передач показано на рис. 5.

Видно, що потенціальне розсіяння ядер ¹⁰В + + ⁶Li домінує на кутах $\theta_{c.ц.м.} < 60^{\circ}$. У розсіянні іонів ¹⁰В на кути $\theta_{c.ц.м.} > 60^{\circ}$ значну роль відіграє також процес реорієнтації ядра ¹⁰В. Роль інших процесів у пружному розсіянні ядер ¹⁰В + ⁶Li, як видно на рис. 7, незначна. Когерентна сума потенціального розсіяння та реорієнтації спінів ядер ¹⁰В і ⁶Li (крива Σ) задовільно описує експериментальні дані.

Опис експериментальних даних пружного розсіяння ядер ¹⁰B + ⁶Li M3KP-перерізами при використанні (¹⁰B + ⁶Li)-потенціалів DF i WS із параметрами, поданими в табл. 3 для взаємодії ядер ¹⁰B + ⁶Li (дана робота) та ¹⁰B + ⁷Li (потенціал WS) [3], показано на рис. 8. Видно суттєві відмінності M3KP-перерізів пружного розсіяння ядер ¹⁰B + ⁶Li при використанні параметрів потенціалів WS взаємодії ядер ¹⁰B + ⁶Li та ¹⁰B + ⁷Li в області середніх кутів (*ізотопічний ефект*).

Рис. 8. Порівняння МЗКР-розрахунків пружного розсіяння ядер ¹⁰В + ⁶Li при енергії $E_{na6}(^{10}B) = 51$ MeB при використанні параметрів потенціалів WS та оптичного потенціалу DF взаємодії ядер ¹⁰В + ⁶Li.

Диференціальні перерізи непружного розсіяння ядер ⁶Li + ¹⁰В при енергії $E_{\text{лаб}}(^{10}\text{B}) = 51 \text{ MeB}$ для збуджених станів ядер ⁶Li та ¹⁰В показано на рис. 9 - 11.

На рис. 9 показано експериментальні дані та МЗКР-розрахунки для збуджених станів 0,710 МеВ (1⁺), 2,154 МеВ (1⁺), 3,587 МеВ (2⁺) ядра ¹⁰В та збудженого стану 2,185 МеВ (3⁺) ядра ⁶Li. Збуджені стани 2,154 МеВ (1⁺) ядра ¹⁰В та 2,185 МеВ (3⁺) ядра ⁶Li в експерименті не розділялись. Для них поміряно сумарні диференціальні перерізи. Кривими на рисунку показано відповідні МЗКР-розрахунки перерізів розсіяння за моделями колективних збуджень ядер (*ротаційних* та вібраційних). Сумарні МЗКР-перерізи для нерозділених в експерименті станів ядер ¹⁰В та ⁶Li показано кривою Σ .

Кутові розподіли диференціальних перерізів непружного розсіяння ядер ¹⁰В + ⁶Li для збуджених станів 4,774 MeB (3⁺) і нерозділених в експерименті станів 5,11 MeB (2⁻) + 5,18 MeB (1⁺) та 5,920 MeB (2⁺) + 6,025 MeB (4⁺) + 6,129 MeB (3⁻) ядра ¹⁰В показано на рис. 10. Для нерозділених в експерименті збуджених станів ядра ¹⁰В поміряно сумарні диференціальні перерізи. Штриховими кривими показано M3КР-розрахунки для окремих збуджених станів, а кривими Σ – сумарні M3КР перерізи для нерозділених станів та стану 4,774 MeB ядра ¹⁰В.

Рис. 9. Диференціальні перерізи непружного розсіяння ⁶Li(¹⁰B, ¹⁰B)⁶Li при енергії $E_{\rm ла6}(^{10}B) = 51$ MeB для збуджених станів 0,710 MeB (1⁺), 2,154 MeB (1⁺), 3,587 MeB (2⁺) ядра ¹⁰B та збудженого стану 2,185 MeB (3⁺) ядра ⁶Li. Криві – M3KP-перерізи розсіяння іонів ¹⁰B ядрами ⁶Li для колективних збуджень ядер ¹⁰B i ⁶Li.

Рис. 10. Диференціальні перерізи непружного розсіяння ⁶Li(¹⁰B, ¹⁰B)⁶Li при енергії $E_{\pi a 6}(^{10}B) = 51$ MeB для збуджених станів 4,774 MeB - 6,129 MeB ядра ¹⁰B. Криві – МЗКР-розрахунки непружного розсіяння ядер ¹⁰B + ⁶Li за моделями колективних збуджень ядра ¹⁰B.

Кутові розподіли диференціальних перерізів непружного розсіяння ядер ¹⁰В + ⁶Li для збуджених станів 4,31 MeB (2⁺) і 5,70 MeB (1⁺) ядра ⁶Li та відповідні МЗКР-розрахунки показано на рис. 11. Видно задовільний опис МЗКР-перерізами експериментальних даних при використанні в МЗКР-розрахунках параметрів деформації ядра ⁶Li, поданих у табл. 1.

Рис. 11. Диференціальні перерізи непружного розсіяння ⁶Li(¹⁰B, ¹⁰B)⁶Li при енергії $E_{na6}(^{10}B) = 51$ MeB для збуджених станів 4,31 MeB (2⁺) та 5,70 MeB (1⁺) ядра ⁶Li. Криві – МЗКР-розрахунки за моделями колективних збуджень ядер.

Експериментальні дані пружного розсіяння ядер ⁶Li + ¹⁰В при енергії $E_{na6}(^{6}Li) = 30$ MeB [1] також було проаналізовано за M3KP. Ці дані разом з M3KP-перерізами показано на рис. 12. У M3KP-розрахунках використовувався потенціал WS взаємодії ядер ⁶Li + ¹⁰В з наборами параметрів, поданими в табл. 3.

4. Основні результати та висновки

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння іонів ¹⁰В ядрами ⁶Li при енергії $E_{na6}(^{10}B) =$ = 51 MeB. Експериментальні дані розсіяння ядер ⁶Li + ¹⁰В при енергіях $E_{na6}(^{10}B) =$ 51 MeB та $E_{na6}(^{6}Li) =$ 30 MeB [1] проаналізовано за M3KP. У

Рис. 12. Диференціальні перерізи пружного розсіяння ${}^{10}B({}^{6}Li, {}^{6}Li){}^{10}B$ при енергії $E_{\pi a 6}({}^{6}Li) = 30$ МеВ [1]. Криві – МЗКР-розрахунки з параметрами потенціалу WS даної роботи (сумарна крива Σ) та з роботи [1] (сумарна крива $\Sigma_{[1]}$).

схему зв'язку включались пружне й непружне розсіяння ядер ⁶Li + ¹⁰В, процеси реорієнтації спінів ядер ⁶Li і ¹⁰В та найбільш важливі реакції передач. Визначено параметри потенціалу взаємодії ядер ${}^{6}Li + {}^{10}B$ типу WS та параметри деформації ядер ⁶Li i ¹⁰В. Досліджено механізми розсіяння ядер ${}^{6}Li + {}^{10}B$. Визначено внески в експериментальні дані потенціального розсіяння, процесів реорієнтації спінів ядер ⁶Li і ¹⁰В та одно- й двоступінчастих передач нуклонів і кластерів. Досліджено відмінності (ефекти) кутових розподілів пружного розсіяння ядер ⁶Li + ¹⁰В при використанні в МЗКР-розрахунках потенціалів взаємодії ядер ⁶Li + ¹⁰В i ⁷Li + ¹⁰В та фолдінг-потенціалу DF взаємодії ядер ⁶Li + ¹⁰В з уявною частиною (*ізотопічні* ефекти взаємодії ядер).

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- K.W. Kemper et al. Spectroscopic information from the ⁹Be(⁷Li, ⁶He)¹⁰B and ⁹Be(⁷Li, ⁶Li)¹⁰Be reactions. Phys. Rev. C 15 (1977) 1726.
- 2. M. Kowalczyk. SMAN: A Code for Nuclear Experiments. Warsaw University Report, 1998.
- 3. A.T. Rudchik et al. Isotopic effects in the ⁷Li + ^{10,11}B elastic and inelastic scattering. Eur. Phys. J. A 33 (2007) 317.
- J. Cook. DFPOT a program for the calculation of double folded potentials. Comp. Phys. Com. 25(2) (1982) 125.
- 5. R.V. Reid. Local phenomenological nucleon-nucleon potentials. An. Phys. 50 (1968) 411.
- R.V. Bertsch et al. Interactions for inelastic scattering derived from realistic interactions. Nucl. Phys. A 284 (1977) 399.
- 7. H. De Vries, C.W. De Jager, C. De Vries. Nuclear

charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.

- 8. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 9. M.F. Vineyard, K.W. Kemper, J. Cook. Excitation of ⁶Li by ¹⁶O at $E_{c.m.} = 18.7$ MeV. Phys. Lett. B 142 (1984) 249.
- A.T. Rudchik et al. Elastic and inelastic scattering of ⁶Li + ¹⁸O versus ⁷Li + ¹⁸O and ⁶Li + ¹⁶O. Nucl. Phys. A 922 (2014) 71.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the p-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 12. А.Т. Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (про-

грамма DESNA). Препринт Ин-та ядерных исслед. АН УССР. КИЯИ-82-12 (К., 1982) 27 с.

 А.Т. Рудчик, Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач. УФЖ 30 (1985) 819.

14. А.Н. Бояркина. Структура ядер 1р-оболочки (Москва: Московский университет, 1973) 62 с.

А. Т. Рудчик^{1,*} А. А. Рудчик¹, О. О. Чепурнов¹, К. Русек², К. В. Кемпер³, Е. И. Кощий⁴, С. Ю. Межевич¹, Вал. М. Пирнак¹, О. А. Понкратенко¹, А. Столяж², Р. Сюдак⁶, А. П. Ильин¹, Б. В. Мищенко¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Институт ядерных исследований НАН Украины, Киев, Украина ² Лаборатория тяжелых ионов Варшавского университета, Варшава, Польша ³ Отдел физики Флоридского государственного университета, Таллахаси, США ⁴ Циклотронный институт Техасского А&М университета, Техас, США ⁵ Институт ядерной физики им. Г. Неводничаньского, Краков, Польша

*Ответственный автор: rudchik@kinr.kiev.ua

УПРУГОЕ И НЕУПРУГОЕ РАССЕЯНИЕ ИОНОВ ¹⁰В ЯДРАМИ ⁶Li ПРИ ЭНЕРГИИ 51 МэВ

Получены новые экспериментальные данные дифференциальных сечений упругого и неупругого рассеяния ионов ¹⁰В ядрами ⁶Li при энергии $E_{na6}(^{10}B) = 51$ МэВ для основных и возбужденных состояний 2,18 – 5,7 МэВ ядра ⁶Li и 0,7 – 6,56 МэВ ядра ¹⁰В. Измеренные экспериментальные данные и известные из литературы данные упругого рассеяния ионов ⁶Li ядрами ¹⁰В при энергии $E_{na6}(^{6}Li) = 30$ МэВ проанализированы по методу связанных каналов реакций. В схему связи каналов были включены упругое и неупругое рассеяние ядер ⁶Li + ¹⁰B, процессы переориентации спинов ядер ⁶Li и ¹⁰В и самые важные реакции передач. Определены параметры потенциала взаимодействия ядер ⁶Li + ¹⁰B типа Вудса - Саксона и параметры деформации ядер ⁶Li и ¹⁰В. Исследованы отличия упругого рассеяния ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B, при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹⁰B по и самые в упругое рассеяние ядер ⁶Li + ¹⁰B реакций одно- и двух-

Ключевые слова: ядерные реакции ⁶Li(¹⁰B, ¹⁰B), E = 51 МэВ, ядерные спектры, $\sigma(\theta)$, механизмы рассеяния ядер, параметры деформации ядер.

A. T. Rudchik^{1,*}, A. A. Rudchik¹, O. O. Chepurnov¹, K. Rusek², K. W. Kemper³, E. I. Koshchy⁴, S. Yu. Mezhevych¹, Val. M. Pirnak¹, O. A. Ponkratenko¹, A. Stolarz², R. Siudak⁵, A. P. Ilyin¹, B. V. Mishchenko¹, Yu. M. Stepanenko¹, V. V. Uleshchenko¹, Yu. O. Shyrma¹

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

² Heavy Ion Laboratory of Warsaw University, Warsaw, Poland

³ Physics Department, Florida State University, Tallahassee, USA

⁴ Cyclotron Institute, Texas A&M University, College Station, USA

⁵ H. Niewodniczański Institute of Nuclear Physics, Cracow, Poland

*Corresponding author: rudchik@kinr.kiev.ua

ELASTIC AND INELASTIC SCATTERING OF ¹⁰B IONS BY ⁶Li NUCLEI AT ENERGY 51 MeV

New experimental data of angular distributions for the elastic and inelastic scattering of ¹⁰B ions by ⁶Li nuclei were obtained at the energy $E_{lab}(^{10}B) = 51$ MeV for the ground and excited 2.18 - 5.7 MeV states of ⁶Li and 0.7 - 6.56 MeV states of ¹⁰B. These elastic and inelastic scattering data and known from literature data of elastic scattering of ⁶Li ions by ¹⁰B nuclei at energy $E_{lab}(^{6}Li) = 30$ MeV were analyzed within coupled-reaction-channels method. The ⁶Li + ¹⁰B elastic and inelastic scattering data, spin reorientation of ⁶Li and ¹⁰B, as well as more important transfer reactions, were included in the channels-coupling scheme. The Woods - Saxon potential parameters, as well as ⁶Li and ¹⁰B deformation parameters, were deduced. The mechanisms of the ⁶Li + ¹⁰B inelastic scattering were studied within the model of collective nuclei excitations, the differences of the ⁶Li + ¹⁰B elastic scattering from using ⁶Li + ¹⁰B, ⁷Li + ¹⁰B and ⁶Li + ¹¹B potentials were observed, the contributions of one- and two-step transfers were deduced using spectroscopic amplitudes for transfer particles calculated within the translation invariant shell model.

Keywords: nuclear reactions ⁶Li(¹⁰B, ¹⁰B), E = 51 MeV, particle spectra, $\sigma(\theta)$, nuclear scattering mechanisms, nuclear deformation parameters.

REFERENCES

- K.W. Kemper et al. Spectroscopic information from the ⁹Be(⁷Li, ⁶He)¹⁰B and ⁹Be(⁷Li, ⁶Li)¹⁰Be reactions. Phys. Rev. C 15 (1977) 1726.
- 2. M. Kowalczyk. SMAN: A Code for Nuclear Experiments. Warsaw University Report, 1998.
- 3. A.T. Rudchik et al. Isotopic effects in the ⁷Li + ^{10,11}B elastic and inelastic scattering. Eur. Phys. J. A 33 (2007) 317.
- J. Cook. DFPOT a program for the calculation of double folded potentials. Comp. Phys. Com. 25(2) (1982) 125.
- 5. R.V. Reid. Local phenomenological nucleon-nucleon potentials. An. Phys. 50 (1968) 411.
- R.V. Bertsch et al. Interactions for inelastic scattering derived from realistic interactions. Nucl. Phys. A 284 (1977) 399.
- H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.
- 8. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.

- 9. M.F. Vineyard, K.W. Kemper, J. Cook. Excitation of ⁶Li by ¹⁶O at $E_{c.m.} = 18.7$ MeV. Phys. Lett. B 142 (1984) 249.
- A.T. Rudchik et al. Elastic and inelastic scattering of ⁶Li + ¹⁸O versus ⁷Li + ¹⁸O and ⁶Li + ¹⁶O. Nucl. Phys. A 922 (2014) 71.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the p-shell nuclei. Phys. Rev. C 15 (1977) 84.
- A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitude calculations for different clusters in the 1p-shell nuclei (code DESNA). The preprint of the Institute for Nuclear Research AS of Ukraine. КИЯИ-82-12 (Kyiv, 1982) 27 p. (Rus)
- A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitudes of multinucleon clusters in the 1p-shell nuclei and multinucleon transfer reaction analysis. Ukrainian Journal of Physics 30 (1985) 819. (Rus)
- 14. A.N. Boyarkina. *Structure of Nuclei of lp-shell* (Moskva: Moscow University, 1973) 62 p. (Rus)

Надійшла / Received 22.10.2019