ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.171/539.172

https://doi.org/10.15407/jnpae2020.04.295

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. Е. Куцик¹, К. Русек², К. В. Кемпер³, Е. П'ясецкі², А. Столяж², А. Тщіньска², Вал. М. Пірнак¹, О. А. Понкратенко¹, І. Строєк⁴, Є. І. Кощий⁵, Р. Сюдак⁶, С. Б. Сакута⁷, В. А. Плюйко⁸, А. П. Ільїн¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹, В. В. Хейло¹

¹ Інститут ядерних досліджень НАН України, Київ, Україна

² Лабораторія важких іонів Варшавського університету, Варшава, Польща

³ Відділ фізики, Флоридський державний університет, Таллахасі, США

⁴ Національний центр ядерних досліджень, Варшава, Польща

5 Циклотронний інститут Техаського А&М університету, Техас, США

⁶ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща

⁷ Національний дослідницький центр «Інститут Курчатова», Москва, Росія

 8 Київський національний університет імені Тараса Шевченка, Київ, Україна

*Відповідальний автор: rudchik@kinr.kiev.ua

МЕХАНІЗМИ РЕАКЦІЇ ¹²С(¹⁵N, ¹⁴N)¹³С ПРИ ЕНЕРГІЇ 81 МеВ

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{na6}({}^{15}N) = 81$ МеВ для основних та збуджених станів ядер ${}^{14}N$ і ${}^{13}C$. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій (МЗКР) із включенням у схему зв'язку каналів реакцій одно- та двоступінчастих передач нуклонів і кластерів та використанням у МЗКР-розрахунках потенціалів Вудса - Саксона (WS) для вхідного і вихідних каналів реакції. Параметри потенціалу WS взаємодії ядер ${}^{15}N + {}^{12}C$ взято з результатів раніше дослідженого пружного й непружного розсіяння іонів ${}^{15}N$ ядрами ${}^{12}C$ при енергії 81 МеВ, а параметри потенціалу WS для вихідного каналу ${}^{14}N + {}^{13}C$ отримано в даній роботі при підгонці МЗКР-розрахунків перерізів реакції до експериментальних даних реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$. Необхідні для МЗКР-розрахунків реакції спектроскопічні фактори (амплітуди) передаваних у реакціїї нуклонів і кластерів було розраховано в рамках трансляційно-інваріантної моделі 1р-оболонки. Установлено, що в даній реакції основну роль відіграють передачі нейтронів (n) та дейтронів (d). Внески в реакцію двоступінчастих передач нуклонів і кластерів незначні.

Ключові слова: експериментальні дані реакції ¹²С(¹⁵N, ¹⁴N)¹³С, одно- та двоступінчасті механізми реакції, метод зв'язаних каналів реакцій, спектроскопічні амплітуди нуклонів і кластерів.

1. Вступ

Реакції передач при взаємодії важких іонів з ядрами широко використовуються для отримання відомостей про потенціали взаємодії ядер, механізми реакцій, оболонкову та кластерну структуру ядер в основних і збуджених станах.

У даній роботі такі можливості використано при дослідженні реакцій ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ і ${}^{12}C({}^{15}N, {}^{13}C){}^{14}N$ при енергії $E_{\text{паб}}({}^{15}N) = 81$ MeB. Відомостей про експериментальні та теоретичні дослідження цих реакцій не виявлено в науковій літературі. Аналіз кутових розподілів диференціальних перерізів цих реакцій за сучасними моделями структури легких ядер та ядерних реакцій дає змогу отримати відомості про оболонкову та кластерну структуру ядер ¹⁵N i¹³C та механізми одно- та двоступінчастих передач нуклонів і кластерів. Вимірювання кутових розподілів диференціальних перерізів реакції ¹²С(¹⁵N, ¹⁴N)¹³С та отримання вищезазначених відомостей про взаємодію ядер вихідного каналу реакції та механізми реакції і було метою даної роботи.

Як зазначено в роботах [1, 2], раніше на пучку іонів ¹⁵N Варшавського циклотрона U-200P при

енергії $E_{na6}({}^{15}N) = 81$ MeB було поміряно кутові розподіли пружного й непружного розсіяння іонів ${}^{15}N$, ${}^{12}C$ та реакції передач ${}^{12}C({}^{15}N, X)Y$ з виходом ядер X, Y із Z = 3 – 8, у тому числі і продуктів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$.

Пружне й непружне розсіяння іонів ¹⁵N ядрами ¹²С було досліджено в роботах [1, 2]. З аналізу даних цього розсіяння за методом зв'язаних каналів реакцій (МЗКР) було отримано параметри потенціалу Вудса - Саксона (WS) взаємодії ядер ¹⁵N + ¹²C, які використано в даній роботі при МЗКР-аналізі експериментальних даних реакції ¹²C(¹⁵N, ¹⁴N)¹³C для вхідного каналу реакції.

Значну увагу в даній роботі приділено різноманітним одно- та двоступінчастим передачам нуклонів і кластерів, спектроскопічні амплітуди яких обчислено за трансляційно-інваріантною моделлю оболонок (ТІМО) [3]. Параметри потенціалу WS взаємодії ядер ¹⁴N + ¹³C вихідного каналу реакції ¹²C(¹⁵N, ¹⁴N)¹³C отримано з M3KPаналізу експериментальних даних цієї реакції для основних та збуджених станів ядер ¹⁴N і ¹³C з використанням фолдінг-потенціалу (DF) взаємодії цих ядер.

© А. Т. Рудчик, А. А. Рудчик, О. Е. Куцик, К. Русек, К. В. Кемпер, Е. П'ясецкі, А. Столяж, А. Тщіньска, Вал. М. Пірнак, О. А. Понкратенко, І. Строєк, Є. І. Кощий, Р. Сюдак, С. Б. Сакута, В. А. Плюйко, А. П. Ільїн, Ю. М. Степаненко, В. В. Улещенко, Ю. О. Ширма, В. В. Хейло, 2020

2. Методика експерименту

Експеримент 3 дослідження реакцій ¹²С(¹⁵N, *X*)*Y* з виходом стабільних і нестабільних ядер було проведено на циклотроні U-200P Лабораторії важких іонів Варшавського університету на експериментальній установці ICARE [4] при енергії 81 МеВ пучка іонів ¹⁵N з використанням трьох ΔE -*E*-спектрометрів з кремнієвими ΔE - і *E*-детекторами та одного з газовим ΔE - і кремнієвим Е-детекторами. У газовому детекторі використовувався стиснутий аргон. Розкид енергії іонів ¹⁵N на мішені не перевищував 0,5 %. В експерименті використовувалась самопідтримна мішень 12 С товщиною ~ 0,5 мг/см².

Для накопичення та збереження спектрометричної інформації у вигляді двовимірних $\Delta E(E)$ -спектрів використовувались електроннокомп'ютерні методики ICARE та SMAN [5]. Експериментальна методика забезпечувала надійну ідентифікацію продуктів реакцій ¹²C(¹⁵N, X)Y із зарядами Z = 3 - 8 (рис. 1 у роботах [1, 2]) та за масами (рис. 1).

Рис. 1. Типовий $\Delta E(E)$ -спектр локусів азоту та вуглецю – продуктів реакцій ¹²C(¹⁵N, ¹⁴N)¹³C при енергії $E_{\text{лаб}}(^{15}N) = 81$ MeB.

Для одержання енергетичних спектрів ізотопів продуктів реакцій відповідний зарядовий локус $\Delta E(E)$ -спектра розділявся на ізотопні підлокуси, які проектувались на вісь *E*. Отримані таким способом типові енергетичні спектри ядер ¹⁴N і ¹³C, продуктів реакцій ¹²C(¹⁵N, ¹⁴N)¹³C та ¹²C(¹⁵N, ¹³C)¹⁴N, показано на рис. 2.

Рис. 2. Енергетичні спектри ядер ¹³С (a, δ) і ¹⁴N (e, c) – продуктів реакції ¹²С(¹⁵N, ¹⁴N)¹³С при енергії $E_{\text{лаб}}(^{15}N) = 81$ МеВ для кута реєстрації $\theta^{\circ}_{\text{лаб}} = 15^{\circ}$. Суцільними кривими на (a) і (e) показано неперервні фони експериментальних спектрів від багаточастинкових реакцій, а на (δ) і (c) – наближення експериментальних піків симетричними гауссіанами.

Площі гауссіанів використовувалися для обчислення диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$. Для кутів $\theta^{\circ}_{c.u.M}({}^{14}N) < 90^{\circ}$ використовувались енергетичні спектри ${}^{14}N$, а спектри ${}^{13}C - для$ кутів $\theta^{\circ}_{c.u.M}({}^{14}N) = 180^{\circ} - \theta^{\circ}_{c.u.M}({}^{13}C)$. Таким методом було отримано кутові розподіли перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ у повному кутовому діапазоні для основних та збуджених станів ядер ${}^{14}N$ і ${}^{13}C$. Для нерозділених в експерименті станів цих ядер поміряно сумарні диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{лаб}({}^{15}N) = 81$ MeB поміряно для основних станів ядер ${}^{14}N$ і ${}^{13}C$ та збуджених станів 2,31 - 7,03 MeB ядра ${}^{14}N$ і збуджених станів 3,088 – 3,853 MeB ядра ${}^{13}C$. На рис. 3 показано кутові розподіли експериметальних даних реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ для основних станів ядер ${}^{14}N$ і ${}^{13}C$ та збуджених станів 7,028 MeB ядра ${}^{14}N$ і 3,088 MeB ядра ${}^{13}C$.

Рис. 3. Експериментальні дані диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{na6}({}^{15}N) = 81$ МеВ для основних та збуджених станів ядер ${}^{14}N$ і ${}^{13}C$.

3. Аналіз експериментальних даних

Експериментальні дані реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ проаналізовано за МЗКР із включенням у схему зв'язку каналів пружного розсіяння ядер ${}^{15}N + {}^{12}C$ та одно- і двоступінчастих реакцій передач нуклонів і кластерів (рис. 4).

$$\frac{{}^{12}C}{n} + \frac{{}^{12}C}{15} + \frac{{}^{12}C}$$

Рис. 4. Діаграми передач нуклонів і кластерів у реакції ¹²С(¹⁵N, ¹⁴N)¹³С.

Необхідні для МЗКР-розрахунків реакцій передач спектроскопічні амплітуди нуклонів і кластерів x в ядрах A = C + x обчислювалися за ТІМО [3], використовуючи програму DESNA [5, 6]. Спектроскопічні амплітуди S_x для реакцій передач, діаграми яких показано на рис. 4, подано в табл. 1.

У МЗКР-розрахунках використовувалися потенціали Вудса - Саксона (WS)

$$U(r) = -V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} - iW_s \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

для вхідного та вихідного каналів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$. Для обчислення радіусів R_V і R_W ядер $P({}^{14}N)$ і $T({}^{13}C)$ використовувалось співвідношення

$$R_i = r_i (A_P^{1/3} + A_T^{1/3}), i = V, W,$$

де A_P і A_T – масові числа ядер P і T.

Для вхідного каналу ${}^{15}N + {}^{12}C$ реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ було використано параметри потенціалу WS, визначені при МЗКР-аналізі експериментальних даних пружного й непружного розсіяння іонів ${}^{15}N$ ядрами ${}^{12}C$ при енергії $E_{na6}({}^{15}N) = 81$ MeB [1].

Параметри потенціалу WS взаємодії ядер ${}^{14}N + {}^{13}C$ у вихідному каналі реакції визначено методом підгонки МЗКР-перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ до експериментальних даних цієї реакції. При цьому початкові значення параметрів потенціалу ${}^{14}N + {}^{13}C$ визначено методом під-

гонки цього потенціалу до потенціалу DF взаємодії ядер $^{14}N + ^{13}C$, при розрахунках якого використано дані розподілів зарядів в ядрах ^{13}C і ^{14}N з роботи [7]. Потенціал DF взаємодії ядер $^{14}N + ^{13}C$ обчислено за допомогою програми

DFPOT [8]. Отримані значення параметрів потенціалу WS взаємодії ядер $^{14}N + ^{13}C$ подано в табл. 2. Потенціали WS та DF взаємодії ядер $^{14}N + ^{13}C$ показано на рис. 5.

Tabanna 1	Споитровнопінні	own nitwate useroui	D i IZHAATANID Y	$\mathbf{p} = \mathbf{q} = \mathbf{p} \mathbf{q} \mathbf{r}$
таолиця т.	Спектросконтчні	амплитуди нуклони	в і кластерів л	в ядрах А-С+х

Α	С	x	nL_J	S_x	Α	С	x	nL_J	S_x
¹² C	${}^{10}B$	d	$1D_{3}$	1,780	25,187	$^{12}\mathbf{B}$	³ He	$1P_{1/2}$	0,254 ^(a)
^{12}C	${}^{11}B$	р	$1P_{3/2}$	-1,706 ^(a)	15,957			$1P_{3/2}$	-0,090
^{12}C	¹¹ C	n	$1P_{3/2}$	-1,706 ^(a)	18,722	^{12}C	t	$2P_{1/2}$	0,380
¹³ C	¹² C	n	$1P_{1/2}$	0,601	4,946	11 B	α	$2D_2$	0,435
$^{13}C_{3,08}$	¹² C	n	$2S_1$	0,601	1,858	¹³ C	d	$2S_1$	0,248 ^(a)
$^{13}C_{3,68}$	^{12}C	n	$1P_{3/2}$	0,601	1,262			$1D_1$	0,444 ^(a)
$^{13}C_{3,85}$	^{12}C	n	$1D_{5/2}$	0,652	1,093	$^{13}C_{3,1}$	d	$2S_1$	-0,157 ^(a)
^{13}C	${}^{11}B$	d	$2S_1$	-0,263	18,679			$1D_1$	0,435 ^(a)
			$1D_1$	-0,162		^{14}C	р	$1P_{1/2}$	-0,598
			$1D_2$	-0,485 ^(a)				$1F_{5/2}$	0,296
¹³ C	$^{12}\mathbf{B}$	р	$1P_{1/2}$	0,283	17,534	^{14}N	n	$1P_{1/2}$	-1,091 ^(a)
			$1P_{3/2}$	0,801				$1P_{3/2}$	0,386
¹⁴ C	¹³ C	n	$1P_{1/2}$	-1,094 ^(a)	8,177	$^{14}N_{2,31}$	n	$1P_{1/2}$	0,423
¹³ N	¹² C	р	$1P_{1/2}$	0,601	1,944	$^{14}N_{3,9}$	n	$1P_{1/2}$	$-0,244^{(a)}$
			$2P_{3/2}$	-0,096				$1P_{3/2}$	-0,690
			$1F_{5/2}$	-0,293 ^(a)		$^{14}N_{4,9}$	n	$1P_{1/2}$	0,423
¹⁴ N	¹¹ C	t	$2P_{1/2}$	-0,107 ^(a)	22,737	$^{14}N_{5,1}$	n	$1P_{3/2}$	-1,157 ^(a)
			$2P_{3/2}$	-0,096		$^{14}N_{5,6}$	n	$1P_{1/2}$	$-0,244^{(a)}$
			$1F_{5/2}$	-0,293 ^(a)				1P _{3/2}	-0,690
¹⁴ N	^{12}C	d	$2S_1$	0,615	10,272	$^{14}N_{6,2}$	n	$1P_{1/2}$	-0,244 ^(a)
$^{14}N_{2,31}$	$^{12}C_{4,4}$	d	$1D_{2}$	-1,304	7,9595			$1P_{3/2}$	-0,690
$^{14}N_{3,94}$	¹² C	d	$1D_1$	0,246	6,325	$^{14}N_{7,0}$	n	$1P_{3/2}$	-1,157 ^(a)
$^{14}N_{4,91}$	${}^{12}C_{4,4}$	d	$1D_{2}$	-1,304	5,357	¹³ C	t	$2P_{3/2}$	-0,194
$^{14}N_{5,10}$	¹² C	d	$1D_{2}$	0,246	5,167			$1F_{5/2}$	0,296 ^(a)
$^{14}N_{5,69}$	¹² C	d	$1D_1$	0,246	4,582	¹⁵ N	n	$1D_{3/2}$	-0,270
$^{14}N_{5,83}$	¹² C	d	$1D_{3}$	0,246	4,440	¹² C	³ He	$2P_{1/2}$	0,380
$^{14}N_{6,20}$	^{12}C	d	$2S_1$	0,615	4,068	^{14}N	р	$1P_{1/2}$	-1,091
$^{14}N_{6,44}$	¹² C	d	$1D_{3}$	0,246	3,828			$1P_{3/2}$	0,386
$^{14}N_{7,02}$	¹² C	d	$1D_{2}$	0,246	3,244	¹² C	α	$3S_0$	0,544
^{14}N	¹³ C	р	$1P_{1/2}$	-0,461	7,551	¹³ C	³ He	$2P_{1/2}$	0,910
			$1P_{3/2}$	$-0,163^{(a)}$		14 N	d	$1D_1$	1,400
¹⁴ N	¹³ N	n	$1P_{1/2}$	-0,461	10,553	¹⁵ N	р	$1P_{1/2}$	-1,461 ^(a)
			$1P_{3/2}$	-0,163 ^(a)		¹³ C	α	$2F_3$	-0,468 ^(a)
¹⁵ N	¹¹ B	α	$2D_2$	0,435 ^(a)	10,991	¹⁵ N	d	$1D_2$	-0,276
								$1D_3$	-0,074 ^(a)

 $^{(a)}S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x.$

<i>T (</i>)	TT	• •	•••
Tahming)	Папаметни	ΠΛΤΑΠΠΙΩ ΠΙΡ	рээсмони алер
$1 u 0 \pi u u \pi 2$.	mapamerph	потенціаль	Брасмоди лдер
,	1 1	,	, , , , ,

Ядра	<i>E</i> _{с.ц.м.} , MeB	V ₀ , MeB	<i>r_V</i> , фм	<i>а_V</i> , фм	W _s , MeB	<i>r</i> _W , фм	<i>а_w,</i> фм	Літ.
$^{15}N + ^{12}C$	36,0	195	0,790	0,750	8,0	1,250	0,750	[1]
$^{14}N + ^{13}C$	37,8	190	0,790	0,700	10,0	1,250	0,300	

Рис. 5. Порівняння потенціалів WS і DF взаємодії ядер ${}^{14}N + {}^{13}C$.

МЗКР-розрахунки перерізів реакції ${}^{12}C({}^{15}N, {}^{14}C){}^{13}N$ проводилися за допомогою програми FRESCO [9].

Експериментальні дані реакції ¹²C(¹⁵N, ¹⁴N)¹³C при енергії $E_{na6}(^{15}N) = 81$ МеВ для основних станів ядер ¹⁴N і ¹³C та відповідні МЗКР-перерізи показано на рис. 6 для передач (див. рис. 4) протонів (крива), d-кластерів (крива <d>), двоступінчастих передач, t + n i n + t (крива <tn>, когерентна сума) та d + p i p + d (крива <dp>, когерентна сума) тощо.

Видно, що на кутах $\theta^{\circ}_{c.ц.м.}({}^{14}N) < 120^{\circ}$ у реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ домінує передача нейтронів, а на кутах $\theta^{\circ}_{c.ц.м.}({}^{14}N) > 120^{\circ}$ – передача d-кластерів. Внески двоступінчастих передач нуклонів і кластерів у перерізи цієї реакції незначні.

Рис. 6. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{\pi a 6}({}^{15}N) = 81$ МеВ для основних станів ядер ${}^{14}N$ і ${}^{13}C$. Криві – МЗКР-розрахунки для передач нуклонів і кластерів.

Кутові розподіли диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ збуджених станів 2,313 МеВ ядра ${}^{14}N$ і 3,088 та 3,684 МеВ ядра ${}^{13}C$ показано на рис. 7. Штриховими кривими <n> по-казано МЗКР-розрахунки цих перерізів для передач нейтронів (${}^{15}N = {}^{14}N + n$, див. рис. 4), кривими <d> - для передач дейтронів (${}^{15}N = {}^{13}C + d$, див. рис. 4). Суцільними кривими Σ показано когерентні суми цих двох передач, які задовільно описують експериментальні дані. Видно, що в реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ основну роль відіграють передачі нейтронів.

Рис. 7. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{na6}({}^{15}N) = 81$ МеВ для збуджених станів ядер ${}^{14}N$ і ${}^{13}C$. Криві – МЗКР-розрахунки для передач нуклонів і кластерів.

Рис. 8. Диференціальні перерізи реакції ${}^{12}C({}^{15}N,{}^{14}N){}^{13}C$ при енергії $E_{\pi a 6}({}^{15}N) = 81$ МеВ для збуджених станів ядер ${}^{14}N$. Криві – МЗКР-розрахунки для передач нуклонів і кластерів.

Рис. 9. Диференціальні перерізи реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{na6}({}^{15}N) = 81$ МеВ для збуджених станів ядер ${}^{14}N$. Криві – МЗКР-розрахунки для передач нуклонів і кластерів.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ / REFERENCES

- А.Т. Рудчик, А.А Рудчик, О.Е. Куцик та ін. Пружне і непружне розсіяння іонів ¹⁵N ядрами ¹²C при енергії 81 МеВ. Ядерна фізика та енергетика 19(3) (2018) 210. / А.Т. Rudchik, А.А. Rudchik, О.Е. Kutsyk. Elastic and inelastic scattering of ¹⁵N ions by ¹²C nuclei at energy 81 MeV. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 19(3) (2018) 210. (Ukr)
- A.T. Rudchik, A.A. Rudchik, O.E. Kutsyk et al. Elastic and inelastic scattering of ¹⁵N ions by ¹²C at 81 MeV and the effect of transfer channels. Acta Phys. Polon. B 50 (2019) 753.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 4. E. Piasecki et al. *Project ICARE at HIL* (Warsaw: Heavy Ion Laboratory, 2007) 38 p.
- А.Т. Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). Препр. Ин-та ядерных исслед. АН УССР. КИЯИ-82-12 (Киев, 1982)

Кутові розподіли диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ для збуджених станів 4,915 - 7,028 МеВ ядра ${}^{14}N$ показано на рис. 8 і 9.

4. Основні результати та висновки

У даній роботі отримано нові експериментальні дані диференціальних перерізів реакції ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ при енергії $E_{\pi a 6}({}^{15}N) = 81$ МеВ для основних та збуджених станів ядер ${}^{14}N$ і ${}^{13}C$. Експериментальні дані проаналізовано за МЗКР із включенням у схему зв'язку каналів реакцій однота двоступінчастих передач нуклонів і кластерів.

З аналізу експериментальних даних реакції отримано параметри потенціалу WS взаємодії ядер $^{14}N + ^{13}C$ в основних і збуджених станах та інформацію про механізми цієї реакції. Установлено, що в реакції $^{12}C(^{15}N, ^{14}N)^{13}C$ основну роль відіграють передачі нейтронів.

Отримано відомості про оболонкову та кластерну структуру ядер ^{14, 15}N і ¹³C. Обчислено спектроскопічні амплітуди нуклонів і кластерів у цих ядрах.

27 c. / A.T. Rudchik, Yu.M. Tchuvil'sky. Calculation of spectroscopic amplitudes for arbitrary associations of nucleons in 1p-shell nuclei (program DESNA). Prepr. of the Institute for Nucl. Res., AS UkrSSR. KINR-82-12 (Kyiv, 1982) 27 p. (Rus)

- А.Т. Рудчик, Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач. УФЖ 30(6) (1985) 819. / А.Т. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitudes of multinucleon clusters in 1p-shell nuclei and analysis of multinucleon transfer reactions. Ukrainian Journal of Physics 30(6) (1985) 819. (Rus)
- H. De Vries, C. W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.
- J. Cook. DFPOT: a program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.
- I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.

A. T. Rudchik^{1,*}, A. A. Rudchik¹, O. E. Kutsyk¹, K. Rusek², K. W. Kemper³, E. Piasecki², A. Stolarz², A. Trczińska², Val. M. Pirnak¹, O. A. Ponkratenko¹, I. Strojek⁴, E. I. Koshchiy⁵, R. Siudak⁶, S. B. Sakuta⁷, V. A. Plujko⁸, A. P. Ilyin¹, Yu. M. Stepanenko¹, V. V. Uleshchenko¹, Yu. O. Shyrma¹, V. V. Kheilo¹

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
 ² Heavy Ion Laboratory, Warsaw University, Warsaw, Poland
 ³ Physics Department, Florida State University, Tallahassee, USA
 ⁴ National Institute for Nuclear Research, Warsaw, Poland

⁵ Cyclotron Institute, Texas A&M University, College Station, USA

⁶ H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland

⁷ Russian Research Centre "Kurchatov Institute", Moscow, Russia

⁸ Taras Schevchenko Kyiv National University, Kyiv, Ukraine

*Corresponding author: rudchik@kinr.kiev.ua

¹²C(¹⁵N, ¹⁴N)¹³C REACTION MECHANISMS AT ENERGY 81 MeV

The new experimental data of the ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ reaction cross-sections at the energy $E_{lab}({}^{15}N) = 81$ MeV were measured for the ground and excited states of ${}^{14}N$ and ${}^{13}C$ nuclei. The experimental data were analyzed within the coupled-reaction-channels method (CRC) using channels-coupling scheme with the ${}^{15}N + {}^{12}C$ elastic scattering and one- as well as two-step transfers of nucleons and clusters performing CRC-calculations with the Woods - Saxon potentials (WS) for the entrance and exit reaction channels. The WS potential parameters for the ${}^{12}C + {}^{15}N$ nuclear interaction were taken from the previously studied elastic and inelastic scattering of ${}^{15}N$ ions by ${}^{12}C$ nuclei at the energy 81 MeV, when as deduced previously from CRC-analysis of the ${}^{15}N + {}^{12}C$ elastic and inelastic scattering data, when as the WS potential parameters for the ${}^{14}N + {}^{13}C$ reaction exit channel were deduced from fitting of the ${}^{12}C({}^{15}N, {}^{14}N){}^{13}C$ reaction data. The spectroscopic factors (amplitudes) of transferred in the reaction nucleons and clusters, used in the CRC-calculations, were computed within translational invariant shell model of 1p-shell. It was found, that transfers of neutrons (n) and deuterons (d) dominate in this reaction. Multi-step transfers of nucleons and clusters give small contributions to the reaction data.

Keywords: nuclear reaction ¹²C(¹⁵N, ¹⁴C)¹³N data, one- and two-step mechanisms of the reaction, coupled-reaction channels method, spectroscopic amplitudes of nucleons and clusters.

Надійшла/Received 10.08.2020