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PHYSICAL BASES FOR DETERMINATION OF SCATTERING KERNELS
FROM INCOMPLETE DATA IN GRID-LESS X-RAY IMAGING

A mathematical model for the determination of X-ray scattering kernels’ shapes based on incomplete simulation or
measurement data was introduced and tested using a mathematical phantom. The model is originally intended for low-
dose X-ray imaging without anti-scatter grids. The proposed model fits different kinds of symmetrical and asymmetrical
scattering kernels in different tissues well enough for practical applications. Kernels asymmetry is mostly caused by
irradiation of the object near the boundaries of different tissues. The model describes a variety of asymmetrical kernels
by proposed “sectoral” members. Application of the proposed model in scattering compensation procedure reduces re-

sulting error up to 50 % for “wide” scattering kernels.

Keywords: X-ray image, scattered X-ray radiation convolution kernels, clustering analysis, segmentation, Monte-

Carlo simulation, approximation, incomplete data.

1. Introduction

X-ray diagnostics in medicine relies on the analy-
sis of projection images obtained by passing of
X-rays through the living objects. X-ray radiation
passed through the object is partially absorbed and
scattered forming a shadow projection (Fig. 1).
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il o —
\ Primary ray
X-ray source
Detector

Fig. 1. X-ray imaging scheme.

The primary X-rays that were not absorbed or
scattered form a sharp projection of the studied
object’s internal structure. The scattered rays form a
fuzzy and slowly changing pattern in space — a
background that distorts the desired image [1]. There
is a number of hardware techniques that reduce the
effect of scattered radiation on the quality of the re-
sulting X-ray image by directly reducing the amount
of scattered radiation falling on the detector. Such
techniques (like anti-scatter grids) increase patients’
dose because they also decrease primary radiation
and expose increase is required [1]. There are also a
number of methods allowing to correct the image
obtained without using any hardware techniques and

without patient dose increase [2 - 5]. In [6 - 8]
authors proposed a method for correcting X-ray
images by means of “intellectual” deconvolution as
follows:

1. A wide beam of X-ray tube radiation is repre-
sented as the sum of thin “pencil” beams. The radia-
tion that is registered by the detector of the X-ray
scanner is represented as a superposition of the pri-
mary and scattered radiation obtained during irradia-
tion of the object with all of the mentioned thin
beams.

2. The image of scattered radiation obtained du-
ring irradiation of the object with a pencil beam
normalized by the intensity of recorded primary
radiation is a local characteristic of the object — the
scattering kernel (Fig. 2).

3. The resulting radiation M, recorded by the de-
tector can be described by a simple expression (1). It
implies that the object can be divided into a finite
number of regions relatively homogeneous with re-
spect to scattering. In the plane of the resulting
X-ray image each such region is characterized by the
scattering kernel K;, measured image M;, and prima-
ry image P;:

M(x,y) =D M(x, y) =
=S PO+ ARKHKY). @

4. The primary radiation P can be recovered from
the measured total radiation M by splitting the image
into quasi-homogeneous regions and selecting a
scattering kernel K; for each region. The iterative
recovery procedure can be represented in the form of
expression
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P =®{o{M}/ [1+D{K ]},
S =0 H{O{PYP{K}} M, =RP+S, (2

where ® and & are forward and backward Fourier
transforms, S; — estimated scattering radiation image.
The iterative procedure that involves intermediate
estimation of scattering images S; is one of the most
stable approaches.

Initial segmentation of the image into regions M;
and assignment of appropriate kernels K; is per-
formed by a specially trained support vector ma-
chine classifier that takes into account image pixels’
statistical properties [6 - 8]. The tasks of kernels
accumulation and image segmentation for kernels
selection were studied in [6 - 8]. Errors in kernels’
shape significantly influence the estimated primary
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Fig. 2. X-ray pencil beam: scattering kernel genesis.

Scattering kernels parametrization or approxima-
tion using a simple function is required not only for
kernels extrapolation in the scenario mentioned
above but also as a more efficient interpolation
method for “beam-stop” schemes [9], to scale the
scattering kernels for different object sizes, for pre-
diction of kernels for the new object, etc.

There are a number of works devoted to kernels
parametrization. Gaussian-like scattering kernels
were introduced in [3, 10]. Such kernels are good for
calculations but significantly differ from real kernels
and introduce errors.

In the present work, we suggest a simple kernel
approximation based on the physics of X-ray scatte-
ring that can fit symmetrical as well as asymmetrical
kernels for a large variety of tissues.

2. Scattered radiation

Accurate estimations of scattering kernels for any
object may be performed only by Monte-Carlo simu-
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radiation image, especially for “wide” scattering
kernels.

The scattering kernel is essentially the X-ray
image obtained by irradiating the object with a pen-
cil beam. It means that the kernel can be only deter-
mined in the spatial region covered by the detector.
It is easy to notice that image correction requires the
scattering kernels to be known in a spatial region
with a size at least twice the size of the corrected
image (e.g., correction at the image boundary re-
quires the kernel to be known at another image
boundary and vise verse) (Figs. 2 and 3). In most
practical cases detector size corresponds to the in-
vestigated object size and scattering kernels’ data
outside the detector are unknown. Thus, measured,
or simulated data for scattering kernels are incom-
plete and kernels extrapolation is required.

Required
kernel

Image

Image-sized (incomplite) kernel

Fig. 3. Kernel size problem.

lations with a large number of empirical tissues’ pa-
rameters. Scattered radiation also could be estimated
using analytical approaches, but the accuracy of
such estimations is low. Analytical methods apply
only to simple homogenous or heterogeneous
smooth geometry objects. Even in such cases, the
problem remains too complex to find the exact solu-
tion. In most works, only the Compton process is
accounted for neglecting the Rayleigh scattering as
well as multiple scattering processes. One of the
simplest scattered radiation estimations is made for
the model presented in Fig. 4 of [11]. The object is
assumed to be an infinite plate of constant thickness
t located on the distance g from the detector and ir-
radiated by a mono-energetic “pencil” beam (beam
with a very small width that can be described by
Dirac delta function) that falls normally to the sur-
face of the object.
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Fig. 4. Simple homogeneous model.

After applying the simplified Klein - Nishina
formula for Compton scattering differential cross-
section and Berr - Lambert law for primary radiation

attenuation the scattered radiation estimator looks
like the expression

S+g S+d

Is(r)= Kj';oexp[—(t —s)]exp(—psa)(2sin 6 —sin® 6) (Lj {1+ (Lj }ds, (3)

where 0 = tan™[r/(s + g)]; o=[s/(s + g)]
[r*+ (s + 9)71"% up us — effective linear attenuation
coefficients of the primary beam and scattered radia-
tion respectively; K is the experimental constant
dependent on the object thickness, beam energy, and
objects” material. This constant eliminates the
dependence on the X-ray source intensity by norma-
lization of this source intensity such as the total area
of integral Is becoming equal to the scatter-to-primary

ratio SPsz I (r)dr for given object thickness

and source spectrum. The value of SPR can be expe-
rimentally measured or numerically estimated [12].

The analytical model is closely correlated to
Monte-Carlo simulation results with respect to the
mentioned constant K [9].

Significant improvements in this scheme were
proposed in [13]. Authors introduce up to two mate-
rials (heterogeneous model) with more complicated
but still smooth geometry (tested on the slabs and
cylinder) and poly-energetic spectrum of the X-ray
source.

Using Monte-Carlo simulation of X-ray interac-
tion with simple phantoms, like slabs, cylinders with
one layer of material (homogeneous case), or two
layers of material (heterogeneous case) authors
proved that this model predicts the shape of the scat-
tered radiation distribution with high accuracy (from
2 % error for the mono-energetic case and up to 8 %
error in poly-energetic case).

Analytical models are useful for homogeneous
objects with simple geometry (e.g., mammography)
but become too complex otherwise.
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Scattering kernels parametrization

A decent approximation for scattered X-ray radi-
ation distributions with few parameters maybe
obtained from solutions of X-ray radiative transport
equation [14, 15]

AV, L(F ) + (kg (F.2) +p, (F,) ) L(F, A, ) =

=g (F.2) [ L(FAA)W(F, AT, ) AR + L, (A1),

QA
4)
where L(F,f,1), L, (F,A,A) — radiance (intensity)
of total and primary X-rays with wavelength A
passing point T at direction f; p (F,A) and
u, (F,A) distributions of scattering and absorption
coefficients; W(F,ﬁ,ﬁ',x,k’) — angular distribution

(indicatrix) of scattering that is inelastic in general
(scattered wavelength is changing from A’ to A);

V, — spatial gradient.
For totally isotropic medium and independence

of scattering from wavelength, the scattered radia-
tion from (4) satisfies diffuse approximation [14]

VAV () +BF)L(T)=1,(7), ()
where A and B — coefficients that depend on p,
and p,; I,(F)=[L(FAx)didx and I, (F)=
= _[ L, (F,A,A)dnd 2 — spatial density of scattered and

primary radiation energy.
For spatial uniform medium the fundamental so-
lution of (5) has a form
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oe P’
Io(r) = "

— ae—log(r)—ﬁr (6)

where o and B are constants dependent on absorp-

tion and scattering coefficients, r — spherical coor-
dinates system radius. Equation (6) gives scattering
kernel for uniform and isotropic medium, mono-
chromatic radiation, and elastic scattering. Realistic
cases will introduce perturbations into (6).

Ny ) r
CoNr+d. Coyr! 1
iz

According to Monte-Carlo simulations [7] scat-
tering kernel is a function with a significant cylin-
drical symmetry. It has a sharp peak at its center be-
cause forward scattering is a significant part of scat-
tered photons. Kernel rapidly decreases to the
periphery. The more symmetrical and homogenous
objects have the more symmetrical scattering kernel.

Taking these facts into account we suggest
approximating the scattering kernels in the form (7)
that is constructed taking Eqg. (6) into account:

o
J2ai

Nge: Bi.e_[ ] {Cn«/ﬁicﬁﬂ}

,(6,r)=A + A -expy [1+NZGB-]

\

where, 6, r — polar coordinates in image plane; A, B,

C, 0, o — are the free model parameters; N, — para-
meter that defines the r polynomial order (starting
from r®%); N, — parameter that defines an amount of
“extra” sectors in the kernel; m — define the shape of
the Gaussian windows for each “extra” sector. The
kernel is applied to the image pixel with coordinates
X Ve

There is a simple idea that stands behind the ex-
pression above:

scattering kernel rapidly falls on distance (r) —
that’s why there is an exponent from an r polynomi-
al (extension of (3) and (6));

the polynomial under the exponent could have
different order - due to undefined object’s geometry
and homogeneity;

the resulting scattering kernel is expected to have
a specific angular asymmetry, especially in the case
of an object with several “quasi-homogeneous” re-
gions and a border that separates these regions near
the point the scattering kernel is estimated for. Some
sectors (or angular parts) could be amplified, attenu-
ated, or just have another dumping law — that’s why

+

(1+§Bi ] ’ (7)

J

the “extra” sector modifier (the second part of an
expression inside of {} brackets in (7)) was added,;

Gaussian window defined by parameter m was
added just to shape a “sector” transition.

3. Numerical simulation

The proposed model was tested on the scattering
kernels obtained for the mathematical phantom de-
scribed below during the scattering compensation
procedure proposed in [7]. Scattering kernels were
accumulated during the training simulation and the
testing X-ray images — the testing simulation.

Mathematical phantom

Training and testing simulations were performed
using the same phantom given in Fig. 5. It consists
of two cylinders (filled with calcium (1) and with air
(2)) placed in the water box (3). The water box’s
size is 400 x 400 x 100 mm. Calcium cylinder
thickness is 5 mm and air cylinder is 40 mm. Both
cylinders have the same diameter of 120 mm and are
located equidistantly along the x-axis at 100 mm
from the center.

Fig. 5. Mathematical phantom.
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Training and testing simulations

Interactions of X-rays with the phantom were
simulated using the Monte-Carlo method (training
and testing simulations made by the GATE [16]
software package).

Fig. 6. Scattering kernels map.

To provide a training simulation, the phantom
was divided into 625 square regions that correspond
to the resolution of 1.704 cm. The detector was
twice bigger than a phantom with the same 1.3 cm
resolution (49 x 49 pixels). Each area was irradiated
with a pencil beam of a realistic X-ray tube energy
spectrum with a maximum of 75 keV. Physical pro-
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cesses, such as photoelectric effect, Compton scat-
tering, Rayleigh scattering, and synchrotron radia-
tion, were considered. The full set of 625 scattering
kernels were obtained (Fig. 6). Air cylinder offers
significantly less absorption and scattering than cal-
cium cylinder and water. Thus, air cylinder passes
more primary radiation that further scatters in water
resulting in slightly brighter kernels’ images. Calci-
um cylinder significantly absorbs primary radiation
and less radiation further scatters in water providing
significantly darker kernels’ images. Borders with
air offer very few scatterings resulting in very dark
kernels’ images.

Testing simulation differs from the training one
by a smaller detector (object-sized detector with the
same resolution — 25 x 25 pixels) and different
X-ray irradiation scenario — wide straight beam irra-
diated the whole object instead of a pencil beam that
irradiates the object locally.

Scattering kernels parametrization evaluation

Three different kernel types were selected for this
object: symmetrical small and very sharp kernels
obtained while irradiating an air outside the water
box (a); quite symmetrical and less sharp than the
first scattering kernel (b); asymmetrical and wide
kernels obtained mostly on different edges (object-
to-air edge, cylinders-to-water box edges) (c). These
scattering kernels were fitted to the proposed model
(7) using m = 8 and different values for N,=0, ..., 5
and Ng= 0.1 (Fig. 7).
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Fig. 7. Scattering kernels: fitting to the model (top part shows central slices scattering kernels).
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The model was fitted using the central part of the
scattering kernels (known as central 25 x 25 points).
Fig. 7 shows the result of scattering kernels (a)
and (b) fitted with Ny = O (symmetrical model)
and the kernel (c) — with Ny = 0.1 (model with and
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without sectoral asymmetry). Most kernels may be
approximated using the model of orders up to 1. Few
kernels require N, up to 3 and this order was chosen.
Scattering kernel (c) fitting is also shown in Fig. 8.
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Fig. 8. Asymmetric kernel: measured values (a), symmetrical model (b), asymmetrical model (c).

The top part of the figure shows the scattering
kernel's shape along with the fitted model for N, = 3.
The bottom part of the figure shows an error de-
pendent on the polynomial order used estimated by
the expression

\/Z(Kfitted - K)2 / size(K)
> K /size(K)

where K and Kjiqeq are values of scattering kernels and
fitted model in the central part (25 x 25 points) for
training error and outside the central part for testing
error, size(K) —number of pixels in the kernel image.

Increasing the Ny does not improve the error and
that’s why Ny = 1 and N, = 3 were chosen as optimal
values for obtained scattering kernels library.

Finally, the following four scattering kernels
(from different scattering kernels libraries) were
tested during the scattering optimization procedure:
“wide” kernels — originally known values for mea-
sured kernels; “narrow” kernels — the central part of
the original values for measured kernels with zeros
outside (incomplete kernel); “fully approximated”
kernels - values of the model fitted to the “narrow”
kernels; “approximated corners” kernels — “narrow”
kernels values inside the central part with “fully
approximated” kernels values outside.

Error =

, (8)

4, Results and discussion

The testing simulation was made for several
exposure times. Scattering compensation was per-
formed for scattering kernels libraries shrunk to the
different number of scattering kernels by clustering
analysis [6, 7]. Scattering compensation quality was
estimated using error definition (9). Differential
error is a maximum value of (9) in the image, and
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integral error is the average value of the expression

P ~Poyiginal|
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The errors were estimated for the different sce-
narios as follows. The error as a function of scatte-
ring kernels library size for the largest exposure time
is shown in Fig. 9. The error as a function of expo-
sure time for fixed scattering kernels library size (10
clusters) is given in Fig. 10.
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Fig. 9. Error vs Library size.
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Fig. 10. Error vs Exposure.

Some scattering kernels corners (values outside
the known central part of the kernel) contain up to
30 % extra energy in comparison to the central
known part. That is why the application of wider
scattering kernels (“wide”, “approximated corners”,
and “fully approximated” Kkernels) provide lower
error compared to incomplete kernels. The proposed
scattering kernel model performs well according to

Figs. 9 and 10. Error-values for the original “wide”
kernels application are very close to the “model”
kernels cases (with just a little better result for the
first one). For some very small and very large
amounts of kernels, the approximation provides a
slightly smaller error than wide kernels. Approxi-
mated kernels are smoother than computed with the
Monte-Carlo method and can provide a more stable
approximation of scattered radiation image that is
smooth by nature.

5. Conclusions

The proposed model tested on a simple phantom
demonstrated good results in the fitting of different
scattering kernel types. Kernels asymmetry is mostly
caused by irradiation of the object near the bounda-
ries of different tissues. The model fits the asymmet-
rical kernels by virtue of “sectoral” member pre-
sence. The scattering compensation procedure pro-
vides up to 50 % less error in the case of
extrapolated kernels application compared to incom-
plete kernels. Almost ideal fitting results were
achieved for the simple phantom. The largest errors
are obtained at the boundaries of asymmetric ker-
nels. Application of the model to real objects is
expected to provide not so good results but these
results are expected to be much better than for the
application of kernels with incomplete outside data.

We thank Ukrainian National Grid [17] infra-
structure and Information and Computer Center of
National Taras Shevchenko University of Kyiv for
providing computing resources.
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Kagpeopa meouunoi padiogpizuxu, paxyrvmem padiogizuku, enekmpoHiKu ma KomMn 1omepHux cucmem
Kuiscoroeo nayionanvnoeo ynieepcumemy imeni Tapaca Illesuenxa, Kuis, Ykpaina

BignoinansHuii aBrop: antondanik@gmail.com

®I3UYHI OCHOBY BU3HAUEHHSA ®YHKIIIH SI/IPA PO3CIIOBAHHSA
3A HEHOBHUM HABOPOM JIAHUX Y BE3PACTPOBIV PEHTTEHOI'PA®II

3anpornoHOBaHO Ta BUMPOOYBAHO 33 JOMOMOI0K MaTeMaTHYHOTrO (haHTOMa MaTeMaTHYHY MOJENb (hopMu saep pos-
CifoBaHHS PEHTTCHIBCHKMX MIPOMEHIB Ha OCHOBI HEIOBHMX JaHUX MOZAEMIOBaHH:A. [lependadueHo BUKOPUCTaHHS MOJCTI
IUIsL TTIOTPe® HU3BKOI030BOT PEHTICHOCKOIIT 0€3 3aCTOCYBaHHS NPOTHPO3CIIOBAJIBHUX PacTpiB. 3alpONOHOBAaHA MOZEIb
MIIXOOUTH IS PI3HUX THUIIB CHMETPHYHUX TA ACHMETPUYHUX SIEp PO3CIIOBaHHS Pi3HUX TKAHWH y JOCTATHIN VIS Mpak-
TUYHOTO BUKOPHUCTAHHS Mipi. ACHMeTpis saep 374eOiIbIIoro BUHUKAE TP OMPOMIHEHHI MEX MOy Pi3HUX TKaHUH.
Mopenb onucye MUPOKE KOO aCHMETPUYHUX S/ICp 3aBISKH 3allPOIIOHOBAHOMY «CEKTOPHOMY» JOIaHKy. Bukopucran-
Hsl 3aIIPONIOHOBAHOI MOJIETI MPU KOMIIEHCALIii PO3CisTHOr0 BHIPOMIHIOBAHHS 3MEHILYE Pe3yJIbTYHOUY MOXHOKY KOMICH-
cauii 10 50 % y NOpiBHSHHI 3 pe3yJbTaTaMU BUKOPHCTAHHS BY3bKHUX SIIIED.

Kniouosi crnoea: peHTreHiBCcbKe 300pa)KeHHsl, 3TOPTKOBI sIpa PO3CISTHOrO PEHTIeHIBCHKOTO BUIPOMIHIOBAHHS, KJIAc-
TEPHHUH aHai3, CerMeHTallis, CUMYJIAIis metogoM MonTe-Kapiio, anpokcumaliisi, HEIIOBHI JaHi.
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