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PHYSICAL BASES FOR DETERMINATION OF SCATTERING KERNELS 
FROM INCOMPLETE DATA IN GRID-LESS X-RAY IMAGING 

 

A mathematical model for the determination of X-ray scattering kernels’ shapes based on incomplete simulation or 

measurement data was introduced and tested using a mathematical phantom. The model is originally intended for low-

dose X-ray imaging without anti-scatter grids. The proposed model fits different kinds of symmetrical and asymmetrical 

scattering kernels in different tissues well enough for practical applications. Kernels asymmetry is mostly caused by 

irradiation of the object near the boundaries of different tissues. The model describes a variety of asymmetrical kernels 

by proposed “sectoral” members. Application of the proposed model in scattering compensation procedure reduces re-

sulting error up to 50 % for “wide” scattering kernels.  

Keywords: X-ray image, scattered X-ray radiation convolution kernels, clustering analysis, segmentation, Monte-

Carlo simulation, approximation, incomplete data. 
 

1. Introduction 
 

X-ray diagnostics in medicine relies on the analy-

sis of projection images obtained by passing of 

X-rays through the living objects. X-ray radiation 

passed through the object is partially absorbed and 

scattered forming a shadow projection (Fig. 1). 
 

 
Fig. 1. X-ray imaging scheme. 

 

The primary X-rays that were not absorbed or 

scattered form a sharp projection of the studied  

object’s internal structure. The scattered rays form a 

fuzzy and slowly changing pattern in space – a 

background that distorts the desired image [1]. There 

is a number of hardware techniques that reduce the 

effect of scattered radiation on the quality of the re-

sulting X-ray image by directly reducing the amount 

of scattered radiation falling on the detector. Such 

techniques (like anti-scatter grids) increase patients’ 

dose because they also decrease primary radiation 

and expose increase is required [1]. There are also a 

number of methods allowing to correct the image 

obtained without using any hardware techniques and 

without patient dose increase [2 - 5]. In [6 - 8]  

authors proposed a method for correcting X-ray  

images by means of “intellectual” deconvolution as 

follows: 
1. A wide beam of X-ray tube radiation is repre-

sented as the sum of thin “pencil” beams. The radia-
tion that is registered by the detector of the X-ray 
scanner is represented as a superposition of the pri-
mary and scattered radiation obtained during irradia-
tion of the object with all of the mentioned thin 
beams. 

2. The image of scattered radiation obtained du-
ring irradiation of the object with a pencil beam 
normalized by the intensity of recorded primary  
radiation is a local characteristic of the object – the 
scattering kernel (Fig. 2). 

3. The resulting radiation M, recorded by the de-

tector can be described by a simple expression (1). It 

implies that the object can be divided into a finite 

number of regions relatively homogeneous with re-

spect to scattering. In the plane of the resulting 

X-ray image each such region is characterized by the 

scattering kernel Ki, measured image Mi, and prima-

ry image Pi: 
 

( , ) ( , )ii
M x y M x y   

 

 .( , ) { }( , )i i ii i
P x y P K x y    (1) 

 

4. The primary radiation P can be recovered from 

the measured total radiation M by splitting the image 

into quasi-homogeneous regions and selecting a 

scattering kernel Ki for each region. The iterative 

recovery procedure can be represented in the form of 

expression 
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 1{ { } { }]},i i iS P K     ,i iiM P S   (2) 

 

where Ф and Ф
1

 are forward and backward Fourier 

transforms, Si – estimated scattering radiation image. 

The iterative procedure that involves intermediate 

estimation of scattering images Si is one of the most 

stable approaches. 

Initial segmentation of the image into regions Mi 

and assignment of appropriate kernels Ki is per-

formed by a specially trained support vector ma-

chine classifier that takes into account image pixels’ 

statistical properties [6 - 8]. The tasks of kernels  

accumulation and image segmentation for kernels 

selection were studied in [6 - 8]. Errors in kernels’ 

shape significantly influence the estimated primary 

radiation image, especially for “wide” scattering 

kernels.  

The scattering kernel is essentially the X-ray  

image obtained by irradiating the object with a pen-

cil beam. It means that the kernel can be only deter-

mined in the spatial region covered by the detector. 

It is easy to notice that image correction requires the 

scattering kernels to be known in a spatial region 

with a size at least twice the size of the corrected 

image (e.g., correction at the image boundary re-

quires the kernel to be known at another image 

boundary and vise verse) (Figs. 2 and 3). In most 

practical cases detector size corresponds to the in-

vestigated object size and scattering kernels’ data 

outside the detector are unknown. Thus, measured, 

or simulated data for scattering kernels are incom-

plete and kernels extrapolation is required.  
 

 
 

Image-sized (incomplite) kernel 
 

Fig. 2. X-ray pencil beam: scattering kernel genesis. 
 

Fig. 3. Kernel size problem. 
 

Scattering kernels parametrization or approxima-
tion using a simple function is required not only for 
kernels extrapolation in the scenario mentioned 
above but also as a more efficient interpolation 
method for “beam-stop” schemes [9], to scale the 
scattering kernels for different object sizes, for pre-
diction of kernels for the new object, etc. 

There are a number of works devoted to kernels 
parametrization. Gaussian-like scattering kernels 
were introduced in [3, 10]. Such kernels are good for 
calculations but significantly differ from real kernels 
and introduce errors. 

In the present work, we suggest a simple kernel 

approximation based on the physics of X-ray scatte-

ring that can fit symmetrical as well as asymmetrical 

kernels for a large variety of tissues. 
 

2. Scattered radiation 
 

Accurate estimations of scattering kernels for any 

object may be performed only by Monte-Carlo simu-

lations with a large number of empirical tissues’ pa-

rameters. Scattered radiation also could be estimated 

using analytical approaches, but the accuracy of 

such estimations is low. Analytical methods apply 

only to simple homogenous or heterogeneous 

smooth geometry objects. Even in such cases, the 

problem remains too complex to find the exact solu-

tion. In most works, only the Compton process is 

accounted for neglecting the Rayleigh scattering as 

well as multiple scattering processes. One of the 

simplest scattered radiation estimations is made for 

the model presented in Fig. 4 of [11]. The object is 

assumed to be an infinite plate of constant thickness 

t located on the distance g from the detector and ir-

radiated by a mono-energetic “pencil” beam (beam 

with a very small width that can be described by  

Dirac delta function) that falls normally to the sur-

face of the object. 
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Fig. 4. Simple homogeneous model. 
 

After applying the simplified Klein - Nishina 

formula for Compton scattering differential cross-

section and Berr - Lambert law for primary radiation 

attenuation the scattered radiation estimator looks 

like the expression 

 

 

2

3

0

1
( ) exp[ ( )]exp( )(2sin sin ) 1 ,

t

S S
s

r
I r K t s ds

s g s g

    
           

      
  (3) 

 

where θ = tan
-1

[r/(s + g)]; α = [s/(s + g)] 

[r
2 
+ (s + g)

2
]

1/2
; μp, μs – effective linear attenuation 

coefficients of the primary beam and scattered radia-

tion respectively; K is the experimental constant  

dependent on the object thickness, beam energy, and 

objects’ material. This constant eliminates the  

dependence on the X-ray source intensity by norma-

lization of this source intensity such as the total area 

of integral IS becoming equal to the scatter-to-primary 

ratio ( )SSPR I r dr



   for given object thickness 

and source spectrum. The value of SPR can be expe-

rimentally measured or numerically estimated [12].  

The analytical model is closely correlated to 

Monte-Carlo simulation results with respect to the 

mentioned constant K [9]. 

Significant improvements in this scheme were 

proposed in [13]. Authors introduce up to two mate-

rials (heterogeneous model) with more complicated 

but still smooth geometry (tested on the slabs and 

cylinder) and poly-energetic spectrum of the X-ray 

source. 

Using Monte-Carlo simulation of X-ray interac-

tion with simple phantoms, like slabs, cylinders with 

one layer of material (homogeneous case), or two 

layers of material (heterogeneous case) authors 

proved that this model predicts the shape of the scat-

tered radiation distribution with high accuracy (from 

2 % error for the mono-energetic case and up to 8 % 

error in poly-energetic case). 

Analytical models are useful for homogeneous 

objects with simple geometry (e.g., mammography) 

but become too complex otherwise. 

Scattering kernels parametrization 

A decent approximation for scattered X-ray radi-

ation distributions with few parameters maybe  

obtained from solutions of X-ray radiative transport 

equation [14, 15] 
 

        , , , , , ,r s an L r n r r L r n          

 

       
,

, , , , , , , , , ,s pr L r n w r n n dn d L r n
 

           

(4) 

where  , ,L r n  ,  , ,pL r n   – radiance (intensity) 

of total and primary X-rays with wavelength   

passing point r  at direction n ;  ,s r   and 

 ,a r   distributions of scattering and absorption 

coefficients;  , , , ,w r n n    – angular distribution 

(indicatrix) of scattering that is inelastic in general 
(scattered wavelength is changing from   to  ); 

r  – spatial gradient. 

For totally isotropic medium and independence 

of scattering from wavelength, the scattered radia-

tion from (4) satisfies diffuse approximation [14] 
 

           ,r r s s pA r I r B r I r I r     (5) 
 

where A and B – coefficients that depend on 
s   

and 
a ;    , ,s sI r L r n dnd    and  pI r   

 , ,pL r n dnd   – spatial density of scattered and 

primary radiation energy. 

For spatial uniform medium the fundamental so-

lution of (5) has a form 
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   log( )

0

r
r re

I r e
r


 

    (6) 

 

where   and   are constants dependent on absorp-

tion and scattering coefficients, r  – spherical coor-

dinates system radius. Equation (6) gives scattering 

kernel for uniform and isotropic medium, mono-

chromatic radiation, and elastic scattering. Realistic 

cases will introduce perturbations into (6). 

According to Monte-Carlo simulations [7] scat-

tering kernel is a function with a significant cylin-

drical symmetry. It has a sharp peak at its center be-

cause forward scattering is a significant part of scat-

tered photons. Kernel rapidly decreases to the 

periphery. The more symmetrical and homogenous 

objects have the more symmetrical scattering kernel.  
Taking these facts into account we suggest  

approximating the scattering kernels in the form (7) 
that is constructed taking Eq. (6) into account: 
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 (7) 

 

where, , r  – polar coordinates in image plane; A, B, 

C, ,  – are the free model parameters; Nr – para-

meter that defines the r polynomial order (starting 

from r
0.5

); Nθ – parameter that defines an amount of 

“extra” sectors in the kernel; m – define the shape of 

the Gaussian windows for each “extra” sector. The 

kernel is applied to the image pixel with coordinates 

, .c cx y  

There is a simple idea that stands behind the ex-

pression above: 

scattering kernel rapidly falls on distance (r) – 

that’s why there is an exponent from an r polynomi-

al (extension of (3) and (6)); 

the polynomial under the exponent could have 

different order - due to undefined object’s geometry 

and homogeneity; 

the resulting scattering kernel is expected to have 

a specific angular asymmetry, especially in the case 

of an object with several “quasi-homogeneous” re-

gions and a border that separates these regions near 

the point the scattering kernel is estimated for. Some 

sectors (or angular parts) could be amplified, attenu-

ated, or just have another dumping law – that’s why 

the “extra” sector modifier (the second part of an 

expression inside of {} brackets in (7)) was added; 

Gaussian window defined by parameter m  was 

added just to shape a “sector” transition. 
 

3. Numerical simulation 
 

The proposed model was tested on the scattering 

kernels obtained for the mathematical phantom de-

scribed below during the scattering compensation 

procedure proposed in [7]. Scattering kernels were 

accumulated during the training simulation and the 

testing X-ray images – the testing simulation. 

Mathematical phantom 

Training and testing simulations were performed 

using the same phantom given in Fig. 5. It consists 

of two cylinders (filled with calcium (1) and with air 

(2)) placed in the water box (3). The water box’s 

size is 400  400  100 mm. Calcium cylinder 

thickness is 5 mm and air cylinder is 40 mm. Both 

cylinders have the same diameter of 120 mm and are 

located equidistantly along the x-axis at 100 mm 

from the center. 
 

 

Fig. 5. Mathematical phantom. 
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Training and testing simulations 

Interactions of X-rays with the phantom were 

simulated using the Monte-Carlo method (training 

and testing simulations made by the GATE [16] 

software package).  
 

   y, cm 

 
                                                                            x, cm 

 

Fig. 6. Scattering kernels map. 
 

To provide a training simulation, the phantom 

was divided into 625 square regions that correspond 

to the resolution of 1.704 cm. The detector was 

twice bigger than a phantom with the same 1.3 cm 

resolution (49  49 pixels). Each area was irradiated 

with a pencil beam of a realistic X-ray tube energy 

spectrum with a maximum of 75 keV. Physical pro-

cesses, such as photoelectric effect, Compton scat-

tering, Rayleigh scattering, and synchrotron radia-

tion, were considered. The full set of 625 scattering 

kernels were obtained (Fig. 6). Air cylinder offers 

significantly less absorption and scattering than cal-

cium cylinder and water. Thus, air cylinder passes 

more primary radiation that further scatters in water 

resulting in slightly brighter kernels’ images. Calci-

um cylinder significantly absorbs primary radiation 

and less radiation further scatters in water providing 

significantly darker kernels’ images. Borders with 

air offer very few scatterings resulting in very dark 

kernels’ images. 

Testing simulation differs from the training one 

by a smaller detector (object-sized detector with the 

same resolution – 25  25 pixels) and different 

X-ray irradiation scenario – wide straight beam irra-

diated the whole object instead of a pencil beam that 

irradiates the object locally. 

Scattering kernels parametrization evaluation 

Three different kernel types were selected for this 

object: symmetrical small and very sharp kernels 

obtained while irradiating an air outside the water 

box (a); quite symmetrical and less sharp than the 

first scattering kernel (b); asymmetrical and wide 

kernels obtained mostly on different edges (object-

to-air edge, cylinders-to-water box edges) (c). These 

scattering kernels were fitted to the proposed model 

(7) using m = 8 and different values for Nr = 0, …, 5 

and Nθ = 0.1 (Fig. 7).  

 

   

   

a b c 
 

Fig. 7. Scattering kernels: fitting to the model (top part shows central slices scattering kernels). 
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The model was fitted using the central part of the 

scattering kernels (known as central 25  25 points). 
Fig. 7 shows the result of scattering kernels (a) 

and (b) fitted with Nθ = 0 (symmetrical model)  

and the kernel (c) – with Nθ = 0.1 (model with and  

without sectoral asymmetry). Most kernels may be  

approximated using the model of orders up to 1. Few 

kernels require Nr up to 3 and this order was chosen. 

Scattering kernel (c) fitting is also shown in Fig. 8.  

 

 
a b c 

Fig. 8. Asymmetric kernel: measured values (a), symmetrical model (b), asymmetrical model (c). 
 

The top part of the figure shows the scattering 
kernel's shape along with the fitted model for Nr = 3. 
The bottom part of the figure shows an error de-
pendent on the polynomial order used estimated by 
the expression 

 

 
 

2

/ ( )
,

/ ( )

fitted

Error
K K size K

K size K





 (8) 

 

where K and Kfitted are values of scattering kernels and 

fitted model in the central part (25  25 points) for 
training error and outside the central part for testing 
error, ( )size K  – number of pixels in the kernel image. 

Increasing the Nθ does not improve the error and 
that’s why Nθ = 1 and Nr = 3 were chosen as optimal 
values for obtained scattering kernels library. 

Finally, the following four scattering kernels 
(from different scattering kernels libraries) were 
tested during the scattering optimization procedure: 
“wide” kernels – originally known values for mea-
sured kernels; “narrow” kernels – the central part of 
the original values for measured kernels with zeros 
outside (incomplete kernel); “fully approximated” 
kernels - values of the model fitted to the “narrow” 
kernels; “approximated corners” kernels – “narrow” 
kernels values inside the central part with “fully  
approximated” kernels values outside. 

 

4. Results and discussion 
 

The testing simulation was made for several  
exposure times. Scattering compensation was per-
formed for scattering kernels libraries shrunk to the 
different number of scattering kernels by clustering 
analysis [6, 7]. Scattering compensation quality was 
estimated using error definition (9). Differential  
error is a maximum value of (9) in the image, and 

integral error is the average value of the expression 
 

 cov
.

re ered original

original

P P
Error

P


  (9) 

 

The errors were estimated for the different sce-
narios as follows. The error as a function of scatte-
ring kernels library size for the largest exposure time 
is shown in Fig. 9. The error as a function of expo-
sure time for fixed scattering kernels library size (10 
clusters) is given in Fig. 10. 

 
Fig. 9. Error vs Library size. 
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Fig. 10. Error vs Exposure. 

 

Some scattering kernels corners (values outside 

the known central part of the kernel) contain up to 

30 % extra energy in comparison to the central 

known part. That is why the application of wider 

scattering kernels (“wide”, “approximated corners”, 

and “fully approximated” kernels) provide lower 

error compared to incomplete kernels. The proposed 

scattering kernel model performs well according to 

Figs. 9 and 10. Error-values for the original “wide” 

kernels application are very close to the “model” 

kernels cases (with just a little better result for the 

first one). For some very small and very large 

amounts of kernels, the approximation provides a 

slightly smaller error than wide kernels. Approxi-

mated kernels are smoother than computed with the 

Monte-Carlo method and can provide a more stable 

approximation of scattered radiation image that is 

smooth by nature.  
 

5. Conclusions 
 

The proposed model tested on a simple phantom 

demonstrated good results in the fitting of different 

scattering kernel types. Kernels asymmetry is mostly 

caused by irradiation of the object near the bounda-

ries of different tissues. The model fits the asymmet-

rical kernels by virtue of “sectoral” member pre-

sence. The scattering compensation procedure pro-

vides up to 50 % less error in the case of 

extrapolated kernels application compared to incom-

plete kernels. Almost ideal fitting results were 

achieved for the simple phantom. The largest errors 

are obtained at the boundaries of asymmetric ker-

nels. Application of the model to real objects is  

expected to provide not so good results but these 

results are expected to be much better than for the 

application of kernels with incomplete outside data.  
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ФІЗИЧНІ ОСНОВИ ВИЗНАЧЕННЯ ФУНКЦІЙ ЯДРА РОЗСІЮВАННЯ 

ЗА НЕПОВНИМ НАБОРОМ ДАНИХ У БЕЗРАСТРОВІЙ РЕНТГЕНОГРАФІЇ 
 

Запропоновано та випробувано за допомогою математичного фантома математичну модель форми ядер роз-

сіювання рентгенівських променів на основі неповних даних моделювання. Передбачено використання моделі 

для потреб низькодозової рентгеноскопії без застосування протирозсіювальних растрів. Запропонована модель 

підходить для різних типів симетричних та асиметричних ядер розсіювання різних тканин у достатній для прак-

тичного використання мірі. Асиметрія ядер здебільшого виникає при опроміненні меж поділу різних тканин. 

Модель описує широке коло асиметричних ядер завдяки запропонованому «секторному» доданку. Використан-

ня запропонованої моделі при компенсації розсіяного випромінювання зменшує результуючу похибку компен-

сації до 50 % у порівнянні з результатами використання вузьких ядер.  

Ключові слова: рентгенівське зображення, згорткові ядра розсіяного рентгенівського випромінювання, клас-

терний аналіз, сегментація, симуляція методом Монте-Карло, апроксимація, неповні дані. 
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